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Abstract—The integration of robotic systems into daily life is 
increasing, as technological advancements facilitate independent and 
interdependent decision-making by autonomous agents. Highly 
collaborative human-robot teams promise to maximize the 
capabilities of humans and machines. While a great deal of progress 
has been made toward developing efficient spatial path planning 
algorithms for robots, comparatively less attention has been paid to 
developing reliable means by which to assess the similarities and 
differences in path planning decisions and associated behaviors of 
humans and robots in these teams. This paper discusses a tool, the 
Algorithm for finding the Least Cost Areal Mapping between Paths 
(ALCAMP), which can be used to compare paths planned by humans 
and algorithms in order to quantify the differences between them, and 
understand the user’s mental models underlying those decisions. In 
addition, this paper discusses prior and proposed future research 
related to human-robot collaborative teams. Prior studies using 
ALCAMP have measured path divergence in order to quantify error, 
infer decision-making processes, assess path memory, and assess 
team communication performance. Future research related to human-
robot teaming includes measuring formation and path adherence, 
testing the repeatability of navigation algorithms and the clarity of 
communicated navigation instructions, inferring shared mental 
models for navigation among members of a group, and detecting 
anomalous movement.  

Keywords—ALCAMP, Human-Robot Interaction, Human-
Agent Teaming, Path Mapping, Trust, Shared Mental Models 

I. INTRODUCTION  
As autonomous, intelligent systems become more widely 

integrated into daily human life, the differences in decision-
making processes between humans and robots will pose a 
challenge for successful collaboration in human-robot teams. 
The structures and cognitive processes underlying human 
decision-making are highly adaptive to produce appropriate 
behaviors in uncertain environments. But these processes are 

currently not directly reproducible in the development of 
artificial intelligence. Currently, robots are driven by 
algorithms that are logical by design, but the algorithm may not 
be optimized for producing the range of behaviors required in 
the real world. Differences in decision-making processes 
between human and robots often result in different solutions to 
problems. This has potentially serious implications for human 
trust in autonomous systems and the overall performance of 
human-robot teams.  

People in general prefer not to cede decision-making 
authority to robots. This is in part due to the human team 
member’s lack of knowledge and reasoning about the 
underlying decision-making processes of the robot, the risk 
associated with allowing the robot to make decisions, and 
mismatches in trust and self-confidence [1-3]. However, as 
operational environments become more uncertain, complex, 
and risky, independent and appropriate intelligent decision-
making becomes essential for effective team performance. 
Robot authority should be allowed when the associated 
decisions are consistent with its designed capabilities that 
would also benefit the safety and success of the human team 
[4]. One such set of decisions is related to path planning and 
navigation. 

Recent works in robotics engineering and human-robot 
interaction (HRI) have focused on creating algorithms for 
intelligent path planning and execution that are usable, 
trustworthy, and produce reliable movement for robots [5-7]. 
These algorithms are intended for implementation either in 
fully autonomous or mixed initiative systems designed to 
function in dynamic and probabilistic operational 
environments. The potential for a great deal of variance in the 
weighting of information during path planning in these high 
complexity environments can produce very different solutions 
to spatial problems. For example, in search and reconnaissance 
operations, this information includes terrain features [8] and 
weather conditions [9]. Some of this information may not be 
available or easily quantified for an algorithm, for example 
individual target differences such as stress and expertise [10]. 
Therefore, an autonomous robot’s navigation behavior in 
uncertain conditions may appear to be unpredictable by human 
teammates because of differences in information access, 
mobility, or information weighting between the robot and 
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human. Incongruity between a human’s preferred spatial 
solution to a given problem and the solution generated by the 
robot holds different implications for each of these systems. 
Therefore, increasing the user’s situation awareness (as defined 
by [11]) of the robot’s behaviors can assist the user in 
reasoning about the robot’s intent. Improving situation 
awareness can increase appropriate trust in the robot’s ability 
to fulfill its role in the team [3], [12].  

A. Mental Models and Path Planning 
A user’s mental model is a structured, organized 

knowledge that describes, explains, and predicts a system’s 
purpose, form, function, or state [13, 14], and in HRI supports 
a human’s understanding of the capabilities and limitations of 
the robotic team member [15]. Often, a human team member’s 
mental model is underdeveloped due to a lack of knowledge 
about the system’s capabilities, limited training, or even task 
complexity. Therefore, expectations may not match the 
system’s behaviors, leading to degradations in trust, even if the 
robot is making appropriate decisions [16]. Therefore, it is 
important to consider the HRI implications of implicit social 
cues when moving through a cluttered space [17], identifying 
and incorporating spatial affordances and reasoning for 
replanning [18], and effective communication [19] when 
developing the underlying path planning architectures. This is 
essential, as feedback and movement patterns can convey 
information that leads to user perceptions of the robot’s 
intelligence [20], and the legibility and predictability of the 
navigation behaviors can impact perceived safety [21]. A 
challenge in HRI has been to objectively quantify and assess 
variations in these mental models. Doing so is important 
because the team member’s mental models can directly impact 
trust and use of the robot [15]. Metrics of path divergence 
provide a means of objectively quantifying and assessing user 
mental models.   

B. Quantifying Navigation Algorithms  
In addition to HRI, there are a number of engineering 

problems related to robotics that can benefit from a 
quantitative metric of path divergence. These problems require 
quantifying an algorithm’s ability to adhere to formations and 
paths, the repeatability of stochastic path planning algorithms, 
and the detection of anomalous behavior. The ability of an 
intelligent agent to adhere to its place within a formation has 
been recognized as an engineering problem for over 25 years 
in spacecraft [22], and more recently in unmanned aerial, e.g., 
[23-24] and ground [25-27] vehicle swarms. Comparing a 
vehicle’s path with its optimal path within a swarm formation 
offers a performance metric of the vehicle’s ability to maintain 
formation. These comparisons can be used to quantify 
hardware or software fitness for formation flight applications.  

A related problem is measuring a robot’s ability to adhere 
to a designated path. Deviations in a path can arise from 
global versus local decision-making in an algorithm, or 
environmental effects. For example, sliding is a significant 
cause of route deviation in off-road ground robots. Algorithms 
attempt to control for sliding [28], and comparing the planned 
path with the actual path taken by the robot can provide a 

useful error metric for quantifying the fitness of a hardware-
software system for adhering to a designated path.  

Stochastic navigation algorithms can adapt in uncertain 
environments, and therefore offer many advantages for robot 
navigation [29] and swarm control [30]. By nature, these 
algorithms will produce different paths on each run. Path 
mapping can provide a metric to quantify deviation of the 
traveled path from an optimal path. Calculating statistics over 
multiple runs would allow developers to assess an algorithm’s 
performance in different situations, or with different input 
parameters. If robots are operating in close proximity to 
humans, then the predictability (via consistency) of their paths 
would be exceptionally important. Likewise, reducing 
uncertainty in dynamic systems will reduce the burden on 
other agents within the system.  

Finally, detecting anomalous behavior from paths is an 
active area of research in commercial domains, such as a 
trajectory-based measure of divergence to detect illicit activity 
among taxi drivers [31] or detecting anomalous activity in 
aircrafts [32]. By comparing the planned route with the route 
that the agent travels, it is possible to detect anomalous 
behavior post-hoc or in real time and respond accordingly.  

C. Problem Summary 
This paper discusses the application of a specific algorithm, 

the Algorithm for finding the Least Cost Areal Mapping 
between Paths (ALCAMP). This algorithm compares solutions 
to spatial problems to produce quantitative metrics of 
divergence and correspondence, to research questions related 
to human-robot teaming. A tool to analyze and compare human 
and robot decision-making specifically related to path mapping 
provides potential benefits to the development of a quantifiable 
metric for identifying variations between human and robot 
mental models of spatial navigation, as well as a metric for 
quantifying algorithm development and testing. Outcomes of 
these findings can be used to identify and infer the underlying 
reasons for changes in trust, and impact future system design.  

II. PATH MAPPING FOR HRI AND ROBOTICS ENGINEERING 
The topic of path mapping and analysis is a well-researched 

problem with a number of potential algorithmic solutions (see 
[33]). While there is a clear need for robust metrics for 
comparing routes, these traditional algorithms typically treat 
the paths as trajectories and do not address the specific needs 
of the robotics community. First, the mechanisms used to 
generate two paths may differ in ways that prohibit or 
challenge drawing a meaningful comparison using trajectory-
based methods. For example, comparing traveled paths 
requires scaling or warping movement speeds if there is a great 
disparity in speed between the agents. In an extreme example, 
snake robots may be restricted to speeds of less than a few mph 
[34], whereas an MQ-1 Predator has a top speed of 135 mph 
[35]. In addition, the method used to collect the path data will 
produce different results, and trajectory-based measures cannot 
directly compare paths when one or both paths lacks timing 
information; for example, a robot’s path tracked with GPS 
contains timing information, whereas plan generation does not 
produce timing information relevant for a comparison. A 
similar problem occurs when comparing paths that are 



reconstructed from memory, predicted, or are developed from 
another's instruction [33, 36]. Traveling and creating the path 
may be very slow, taking anywhere from minutes in 
experimental settings, to days in naturalistic settings. However, 
the reconstruction of a path from memory can be exceptionally 
rapid, requiring only seconds. The resultant paths differ greatly 
in terms of timing and the number of points. An algorithm used 
for this purpose must be robust to permit comparing paths with 
inconsistent or nonexistent timing data.  

Second, the complex nature of the operational 
environment, along with the performance characteristics of the 
agents themselves, can produce paths that often self-intersect, 
cross over one another, end abruptly (in the case of link loss or 
destruction of the agent, for example), or produce parallel 
loops (in the case of aircraft performing loitering maneuvers). 
An algorithm useful for HRI should be robust to these 
characteristics of naturalistic paths through uncertain, often 
threatening spaces. ALCAMP is a highly robust path mapping 
algorithm that can be used to quantify path similarity for these 
types of operational environments.  

III. ALCAMP 
The ALCAMP algorithm (see R package [pathmapping], 

available from CRAN: the Comprehensive R Archive 
Network) is designed to map the correspondence and 
divergence between two paths [33]. Paths are defined as an 
ordered series of points in multidimensional space. Critically, 
paths differ from trajectories in that they ignore timing 
information. ALCAMP takes two paths as input, and produces 
an area-based measure of divergence (i.e., a single numerical 
value) as well as a mapping between both paths.  

A. General Description of ALCAMP 
ALCAMP defines a path as a series of points connected by 

line segments, and treats all points and segments on each path 
as nodes. The goal of the optimization process is to find the 
optimal mapping between Paths A and B. The algorithm then 
generates multiple proper mappings, in which each point on 
Path A corresponds to at least one node on Path B, and in 
which each point on Path B corresponds to at least one node 
on Path A. This process results in multiple point and segment 
connections for each node. Connections are pruned by 
selecting the route through a planar graph, containing all 
possible connections between points on one path and nodes on 
the other, that minimizes the average distance between points 
and nodes. The result is both an optimal mapping of the 
correspondence between the two paths, and the divergence 
between the paths operationalized as the area of the resultant 
polygons (see Fig. 1). The applications discussed herein 
concern the use of the divergence metric alone. 

B. Computational Complexity Considerations 
Computational complexity of the algorithm is important, 

whether the intended use for the algorithm is data analysis or 
application in a system. In either case, increasing the 
complexity of the paths will increase trial-wise run time; while  

 
Fig. 1. The proper mapping between Path A and Path B is used to find the 
divergence and correspondence between the two paths. Each path consists of 
points, connected by segments. These features are collectively described as 
Nodes. The points on each path are mapped by the shortest Euclidean distance 
onto nodes of the other. The light grey shaded area indicates the Polygon P, 
the area of which constitutes the measure of divergence between the paths.   

increasing the number of comparisons will increase the total 
run time. While this may be less important in analysis, some 
operational applications may require near real-time path 
comparisons. 

When considering computation, several factors are 
important. The first factor is the speed of the algorithm for 
typical analysis including the expected run time for a single 
comparison and the number of the total comparisons required. 
The second factor is related to computational complexity (and 
therefore run time) scale with the problem size (for a path with 
M segments compared to a path with N segments). Comparing 
more complex paths is more computationally intensive, 
producing longer run times. A third and final consideration is 
the extent to which the algorithm is amenable to simplifying 
the problem (by removing redundant points, for example) 
without substantially distorting of the result.  

Simple ways of computing the area of polygons are 
generally very computationally efficient even given large 
paths. For example, the Surveyor's Formula [37] is essentially 
computing the determinant of a 4*(M+N) matrix for paths M 
and N. However, these methods fail for any moderately-
complex pair of paths (see [33], for a description of these 
limitations). In contrast, the ALCAMP approach is robust, but 
has complexity O((2M+1)*(2N+1)). This means that for large 
naturalistic paths with hundreds of points (or more), the time 
to compute a solution can become a burden. Currently, the 
ALCAMP algorithm is implemented in R code, and on a 2.5 
ghz Intel quad core i5-2520M cpu, problems with a size of 
(2M+1)*(2N+1)=10,000 (around 50x50 segments) will 
produce a mapping in about five seconds. This is sufficient for 
small-to-medium problems. Implementation in a compiled 
language should increase the speed by an order of magnitude. 
The O(MxN) complexity may still be too high for comparing 
paths containing hundreds of points. However, run times can 
be further reduced by simplifying the paths themselves, and 
ALCAMP is amenable to simple path simplification routines.   

In order to reduce run times, the ALCAMP method 
provides functionality for simplifying and smoothing existing 
paths. ALCAMP accomplishes this using shape evolution 



routines [38], which remove points that minimally impact the 
overall shape of the path. Because most paths that are sampled 
at a constant and high frequency are relatively smooth, most 
of the samples are redundant. Removing these redundant 
samples changes the overall path minimally, thus producing a 
very small effect on the overall solution, but these 
simplification processes have the potential to decrease the run 
times substantially.  

IV. APPLICATIONS OF ALCAMP TO NATURALISTIC PROBLEMS, 
AND IMPLICATIONS FOR ROBOTICS 

ALCAMP has been used for a number of applications in 
basic and applied research. These applications have direct 
links to current problems in robotics. In this section we will 
discuss the general problem that these prior applications 
addressed, describe the methodology employed to solve these 
problems, and connect these general problems to current 
research questions in robotics. 

A. Measuring Divergence Between Paths to Quantify Error 
ALCAMP has been used in prior investigations to provide 

an error metric between two paths. Performance can be 
measured as the deviation of the reconstructed path from the 
original path. These cases represent the simplest use of 
ALCAMP to directly compare two paths. In these example 
cases below, the comparison was between an optimal path and 
an attempted reconstruction of that path based on (1) decision-
making, (2) memory, or (3) information communicated by 
another person. In all cases, the technical methodology for 
assessing ALCAMP is identical. The difference between these 
two examples lies in the interpretation of the findings.  

Inferring Decision-Making Capacity. In a study of human 
attentional control and motor performance in a parafoveal 
detection task, ALCAMP was used to quantify the trial-wise 
error in participants’ motor movements by comparing their 
mouse movements to the optimal mouse trajectory [39]. Prior 
research examining the effects of task difficulty and response 
confidence on the resultant motor movements suggested that 
human motor movements reflected dynamic aspects of the 
decision-making process [40]. That is, human mouse 
movements would bow toward distracters when those 
distracters were ambiguous (e.g., share features with the 
target). However, these findings were based upon the averaged 
trajectories across many trials. By examining summary 
statistics of the trial-wise mouse movements, [39] did not find 
evidence for a dynamic motor policy that hedges based upon 
information, but rather a motor policy that executes 
deterministic movements once a threshold of confidence had 
been surpassed. Averaging the movements seen in Fig. 2 
would erroneously indicate a policy that incorporates hedging.  

There are many cases in which researchers may want to 
infer decision-making from mouse movements. For example, 
supervisory control using a stick-and-carrot control scheme 
requires the operator to continually select new destinations for 
the robot [41]. Likewise, even in control schemes that involve  

 
Fig. 2. This figure is an example of human-generated motor movements (blue) 
versus the optimal movement (red arrow). Participants were briefly shown 
four items which varied in color (red / green) or letter (X or O), and instructed 
to click the red X. If they did not see a red X, they were instructed to click the 
black fixation cross. Increasing the item eccentricity from the fixation cross 
increases task difficulty. Left panel shows the task at the tightest eccentricity, 
while right panel shows the task at the widest eccentricity (highest difficulty).  

adjusting parameters rather than directly modifying routes, 
human operators generate mouse movements that may reflect 
aspects related to their current decision-making capacity, such 
as workload or confidence [42]. Quantifying the divergence of 
these mouse movements from the optimal shortest-path 
movements provides a means of examining these variables.  

Path Memory. ALCAMP has also been used to assess 
human memory for unmanned aerial system (UAS) paths 
flown under supervisory control during a simulated wilderness 
search and rescue task [36]. During this task, participants 
piloted the UAS using a simple stick-and-carrot control 
system to search the problem space for targets using a map 
while also monitoring the camera sensor (see Fig. 3). Memory 
performance was quantified by comparing the flown route 
with the reconstructed route (Fig. 4). Results from this work 
suggested that humans encode gist information of the routes 
traveled by UAS under supervisory control, but fail to 
reproduce detailed flight paths.  

Quantifying human memory for paths traveled by 
unmanned systems under their control is valuable for robotics 
research. Participants in the aforementioned study were using 
only a single UAS, and reproduced the routes immediately. 
Supervising multiple UAS requires that the operator maintain 
situation awareness of all UAS not currently being tasked. Put 
another way, the operator must store the locations and 
destinations of all subordinate UAS in memory. The precision 

 
Fig. 3. Participants controlled the UAS using a stick-and-carrot control 
scheme (left panel): clicking the map would set a new destination for the UAS 
(red reticle). Once arriving at the destination, the UAS would orbit until 
retasked. Participants searched for targets located in half of the blue potential 
target locations on the map. After completing the task, participants attempted 
to reconstruct their route by drawing it on the map space (right panel).  



 
Fig. 4. ALCAMP comparisons of flown (red) and reconstructed (dark grey) 
paths. Left panel shows a trial on which the participant exhibited fairly good 
memory for the flight path, failing to encode only superficial aspects of the 
route (loops), versus the right panel in which the participant failed to encode 
large portions of the flight path. Memory performance is quantified by the 
area of the resultant polygon measured in pixels, shown above each panel.  

with which operators can do this determines the precision with 
which they can localize their assets for optimal control.  

Path Communication. Spatial navigation directions are 
communicated verbally among team members in many 
different environments. Reference [33] used ALCAMP to 
quantify team performance in the Human Communication 
Research Centre (HCRC) map task. In this task, Participant A 
is provided with a map containing landmarks, and a path 
through that map. Participant B is provided with the same 
map, but without the spatial path drawn on it. The goal of the 
team is for Participant B to reproduce the path based upon 
verbal instructions from Participant A. In this application, 
ALCAMP provided a means of quantifying trial-wise error 
between the actual and reproduced paths (Fig. 5).  The results 
of this study show that small breakdowns in communication 
can have potentially grave consequences for overall team 
performance. One recent goal of robotics research is the 
development of naturalistic communication with a robotic 
teammate [43-44]. In these types of applications, it is 
imperative that the robot understand the human’s intent, as 
verbal instructions may be vague and require interpretation of 
non-verbal information to disambiguate several candidate 
interpretations [45]. ALCAMP provides a means of 
quantifying the error between the human’s intended route, and 
the route traveled by the robot.  

B. Inferring Mental Models using Multiple Comparisons 
In addition to testing hypotheses related to two groups of 

paths, ALCAMP can be used to create similarity spaces of 
multiple paths with a few additional processing steps. The first 
step is to create a symmetrical n*n dissimilarity matrix, where 
n is the number of paths. Each cell in the matrix corresponds 
to a pairwise comparison of those paths (i.e., the area-based 
divergence measure generated using ALCAMP). The number 
of calculations in this process can be roughly halved by 
generating only the upper or lower triangle of the matrix, then 
reflecting across the diagonal. 

 
Fig. 5. This figure provides examples of two different teams’ verbal 
communication performance on the HCRC task. The actual path viewed by 
Participant A is shown in dark grey whereas the path reproduced by 
Participant B is shown in red. The first team (left panel) performed much 
better than the team whose solution is shown on the right panel; this 
performance difference is reflected in the area of each of the polygons, shown 
above each panel.  

The dissimilarity matrix is used as input for a 
multidimensional scaling (MDS) algorithm, which permits the 
data to be visualized in a reduced number of dimensions 
(ideally two or three). The dissimilarity matrix is symmetrical 
and the diagonal values will be zero (i.e., minimality), but 
there is no reason to assume that the data will satisfy the 
triangle inequality, i.e., divergence D for paths a, b, and c, 
D(a,b) + D(b,c) > D(a,c). Therefore, a non-metric MDS 
algorithm such as Kruskal’s NMDS algorithm is required. The 
result of this step is an n-dimensional spatial mapping of the 
similarity among agents’ paths. This spatial mapping can be 
used to infer shared mental models on the basis of similarity 
reflected by spatial proximity among the agents’ paths.  

In order to infer shared mental models among the agents, a 
clustering algorithm such as K-means [46] or finite mixture 
modeling (FMM) [47-48] is used to cluster paths within the 
MDS solution. Each cluster contains similar paths, 
presumably generated according to a similar mental model for 
the problem space. Importantly, FMM is preferable to K-
means, because MDS projects the similarity relationships into 
lower dimensional solutions. In so doing, it may not 
necessarily properly represent the similarity relationships for 
paths that are highly erroneous or unique. FMM can provide 
some robustness against this by using one Gaussian cluster to 
catch all of the “noisy” routes without obfuscating the 
clustering results.  

This technique was used to infer mental models of 
problem solving shared among participants engaged in a 
simulated UAS task [49]. In that task, participants plotted a 
route for a UAS given two distinct sets of instructions, one 
designed to encourage shortest path solutions, and the other 
designed to encourage search behavior in which participants 
minimized the time expected to find a missing target among 
candidate locations. The results of the study showed that 
participants were capable of adapting to these task 
instructions. However, the participants exhibited several 
different mental models for the best way to adapt to these 
instructions sets. 



 
Fig. 6. Two sample mappings generated using ALCAMP for a single 
participant’s solutions to a spatial problem without (dark grey lines) and with 
the assistance of each GPS navigation algorithm (red lines; either TomTom’s 
MyDrive, left, or Google Maps, right). The area of the dark grey polygons 
indicates the divergence between particiapnts’ paths with and without 
assistance (shown above each panel). The comparatively high area on the left 
panel indicates that the participant made more extreme path changes given 
assistance from TomTom’s MyDrive application than from Google Maps.  

C. Current HRI Applications and Future Directions 
To address the capability to use ALCAMP to quantify path 

planning and its implications on trust, a study is currently 
under way to quantify differences in spatial problem solving 
between humans and common path planning algorithms used 
by GPS navigation systems. In this study, participants are 
provided with a map containing a starting location and a 
number of destinations. Their task is to plan a route along the 
roads to visit all of the destinations, ending on the starting 
location. Participants produce routes with and without the 
assistance of two different GPS navigation algorithms, Google 
Maps and TomTom’s MyDrive application. ALCAMP is used 
to quantify divergence between the agents’ routes.  

Preliminary results from this study indicate a correlation 
between trust (trait-based trust, generally, as well as trust in 
each of the algorithms) and the extent to which each 
participant is willing to modify his route to more closely 
match that suggested by the algorithm (see Fig. 6). 
Furthermore, participants’ ratings of quality for the routes 
produced by each algorithm scale with the extent to which 
those algorithm-generated routes match their own. Further, the 
study described herein will test for consensus (i.e., shared 
mental models) among humans for each of the spatial 
problems provided, and quantify aspects of each of the routes 
that are important to humans versus the tested algorithms. This 
study is conducted in parallel with a related research effort to 
map parameter differences between human and algorithm-
generated routes, with the goal of informing algorithm 
development and leveraging the findings to inform system 
transparency manipulations.  

V. CONCLUSION 
 A tool for quantifying the divergence between paths, and an 
associated method for identifying groups of shared mental 
models among a large number of agents, has the potential to 
address many research and engineering problems in the HRI 
community. Generally, prior approaches to algorithm 

development have focused on optimizing the robot’s 
performance independent of the reception of that robot’s 
behavior by human teammates. The HRI community benefits 
from the ability to quantify the extent to which a robot will 
perform the way its designers intend and human teammates 
expect, which is critical for calibrating appropriate trust. If a 
robot’s teammates have strong mental models of the 
algorithm’s planning process, they will be better suited to 
predict that robot’s actions, and know when to suggest 
alternative actions for the robot when its planning process fails 
to incorporate important information. In cases where the 
robot’s decision making processes and emergent behaviors 
may be poorly understood by human teammates (e.g., due to 
the complexity of the task, differences in information access, or 
differences in the prioritization of task parameters), the present 
methods can be leveraged to identify cases in which the robot’s 
behavior will be unpredictable, warranting manipulations such 
as system transparency to improve user trust in the system. The 
methods presented herein provide a means for addressing these 
needs at the levels of basic research, algorithm development, 
system design, and system performance evaluation. 
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