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Abstract—Performance measurements using human sensing 
and assessment capabilities are limited by an inability to account 
for the multitude of variables that regulate performance state. 
Monitoring behavior alone is not adequate for prediction of 
future performance on a given task and no single physiological 
measurement can provide a complete assessment that influences 
performance. Here we investigate how to analyze a range of 
physiological measurements in near real-time using state of the 
art signal processing methods to predict performance. 

We developed multiple predictive computational models to 
assess when physiology markers that coincide with workload 
levels are reaching a point that performance decreases or 
increases may occur in the near future. Traditionally, models will 
vary significantly between studies (due to the diversity of tasks 
being tested, the number/type of sensors and differing analysis 
techniques), leading to specialized models that do not transfer 
between tasks and individuals. When a model is so specialized 
that it is only predictive to a specific task and not flexible to 
inter- or intra-individual differences without complete system 
retraining, it is impractical in applications outside of controlled 
experiments. To bring practical use of computational models in 
real world environments it is important to examine which types 
of physiological data that can both be reliably processed and 
analyzed in near real-time and that are highly predictive over 
time. It is also necessary to minimize the number of sensors in the 
real world so a sensor and signal sensitivity analysis needs to be 
performed. 

We identified and collected physiological signals linked to 
workload including electroencephalogram (EEG), Heart Rate 
and Heart Rate Variability (HR/HRV) and Eye-Tracking while 
performing multiple tasks at varying difficulty levels. We tested a 
variety of preprocessing methods and computational models, 
including radial basis function kernel support vector machines 
and neural networks, to determine predictive power as well as 
computational time for each type of model. The models were 
tested using each signal independently as well as combinations of 
all the signals. 

Keywords—Workload; Cognitive; EEG; HRV; predictive 
models 

I. INTRODUCTION  

Computational models have gained an increasing presence 
as techniques to understand human behavior and in linking 
behavior to physiological measures [1-3]. These models have 
successfully shown links between measures of workload with 
performance that were not previously apparent due to the large 
amount of data that current sensors are able to collect [4], [5]. 
While many studies implement such models, generalizing 
across studies is difficult due to diversity of task type and 
modified signal integration and processing techniques, as well 
as model implementation and parameter selection. Further, 
few studies evaluate models on multiple tasks, leading to 
highly specialized models that do not transfer between tasks 
and individuals. Consequentially, such models often require 
complete system retraining for usable predictions on novel 
tasks or individuals. To apply computational models outside 
of the lab with practical use in real world environments it is 
important to examine how physiological data can be reliably 
processed, what minimal number of sensors are necessary and 
how can the signals be analyzed in a manner that is beneficial 
for understanding workload levels and performance across 
both individuals and tasks of interest.  

Studies have shown that cognitive workload levels can be 
measured using an increasing number of available sensing 
techniques. These measure of workload can then be used to 
track predict performance. Electroencephalography (EEG) has 
been one of the most common tools for measuring workload, 
identifying increased neural activity corresponding to 
workload levels [6-8]. Eye tracking and/or electrooculography 
(EOG) is also common, as evidence of pupil size and blink 
rate have been linked to workload levels [9], [10]. 
Electrocardiogram (ECG) offers another means to assess 
workload levels via heart rate variability [11]. By combining 
sensors some studies have been able to show workload levels 
consistent across multiple physiological sensors [5], [12] and 
to increase the classification accuracy of any one of these 
systems alone by accounting for a greater number of 



physiological systems that respond to changes in workload. In 
this study we use this combined sensing approach to measure 
performance in multiple tasks to determine how well general 
levels of workload are linked to task performance across 
individuals. Other tools, such as fNIRS, fMRI and biomarkers 
in particular [13], [14], have also shown to be important 
measures of workload we do not address these tools in this 
study, however we plan to in future work. 

The ability of computational models to predict 
performance from physiological signals is an important tool 
that could have large number applications in cognitively 
demanding environments. Many studies have looked at linking 
workload with performance and have had success predicting 
performance [13], it is important to create a systematic and 
comprehensive study evaluating the possibilities and 
limitations of what a combination of physiological measures 
can predict. In this study, we start that process by looking at 
creating a single subject agnostic generalizable model to 
predict performance based on EEG, EOG, eye tracking and 
ECG and perform sensitivity analysis on each signal. We also 
don’t limit ourselves to a single model for a single task, but 
we compare accuracy of a model that is trained based on the 
performance results over two independent tasks and then 
tested on a separate hold-out population the model was not 
trained on. These results are compared with a model that is 
trained on a single trial from all individuals and tested on the 
same population over multiple additional trials as well as a 
model trained and tested on an equal, random distribution of 
all available data. We posit that subject’s physiological signals 
are unique enough that unless their performance is represented 
in the training algorithm there will be a decrease in model 
accuracy of performance prediction. However the exact 
tradeoff between drop-off in accuracy and individualization 
necessary for adequate performance is unknown. This study 
plays an important role in understanding difficulties that occur 
when trying to use physiological data as a measure of 
performance without individualized training. 

Computational models can vary in complexity of 
programing, amount of data needed for training, time needed 
to run the model and number of parameters that need to be 
adjusted (i.e. layer size, learning rates, etc.) In this study we 
analyzed the results of two types of model, but focus primarily 
on one a deep belief network using neural networks. We chose 
a neural networking approach to model human performance, 
based upon the ability of neural networks to robustly classify 
nonlinear data. Additionally we did some initial testing 
comparing the neural network with a radial basis function 
kernel support vector machine (RBF SVM) model. In each 
model we did comprehensive cross-validation by randomly 
distributing the subject pool into training and testing sets and 
running the model 25 times to ensure accurate reporting the 
performance of each model. Simply running a model with a 
single training/testing set may cause skewed results as the 
training or testing data chosen may not be representative of the 
overall data. As performance variation between cross-
validation runs is an indicator of dataset variability and an 

estimate for overall method reliability with respect to the data, 
we will present the models results we tested over the 25 model 
cross-validation runs and indicate that cross-validation should 
be standard procedure when testing models. We finally tested 
multiple combinations of sensors to see how eliminating them 
would change the predictive performance. 

The result of our study shows that complex models do not 
always outperform shallow learning methods and that “more is 
better” does not hold up in collecting physiology features to 
predict performance on a task. Additionally, we show that 
some level of individualized tailoring is imperative for 
supporting the capability of accurately predicting performance 
changes in an individual never before seen. These findings 
provide an indication that a comprehensive study is necessary 
to understand the tradeoffs between generalized model 
performances versus the costs of adapting models to 
individuals. 

II. METHODS 

A. Experimental Setup 

Participants. A mix of thirty-five right-handed 
undergraduate and graduate students from University of 
Maryland were trained and tested on two computer based video 
games to measure performance over a period of four non-
consecutive days. Subjects were trained on the system during 
day 1 and tested days 2, 3 and 4. Four trials (each from 
different participants) were disregarded due to errors in 
recording. 

Task Design. We designed two tasks to titrate workload: a 
simple Snake Game (see Fig. 1) and Prepar3D Flight simulator 
(Fig. 2), each of which contained multiple levels of difficulty. 
Subjects received one 45 minute training period to become 
familiar with the tasks and returned for 3 days following the 
training to perform the tasks. The order of the tasks and 
difficulty levels were randomized for each day. Each difficulty 
level lasted for 5 minutes in both tasks. 

B. Task Description 

Nokia Snake Game. A video game was developed using 
Presentation programming language to mimic the Nokia 
Snake game preloaded on Nokia cellular phones. The game, 

 

Fig. 1. Example of the “Snake Game”, the subjects control the 
head to eat the food while avoiding its own tail and the 
surrounding walls (grey boarder) 



shown in Fig. 1, consists of a “snake” that moves at a constant 
pace, but the subject controls the snake’s direction with 
keyboard commands, including up, down, left or right. The 
goals of the game are to avoid hitting any walls or the snake 
itself (in which case the snake “dies” and the level restarts), 
and to collect as much “food” as possible. When subjects 
direct the snake to “eat” the food, the food adds a single 
additional square to the snake’s length There is no limit to the 
snake’s length, but as it grows longer, it becomes more 
difficult to navigate within the maze without hitting a wall or 
itself.  The subjects completed two different levels of Snake: 
“easy” in which the snake moves at a slow speed (traveling 
across the screen only once every 100 ms) and a faster “hard” 
speed (moving once per 38 ms). The game provides an 
element of automatic titration to player skill; the length of the 
snake increases the difficulty of the subject’s ability to eat 
food while avoiding itself and the walls of the game. During 
testing we found that in the “hard” condition the keyboard 
input latency was delayed such that two fast-sequential 
keystrokes did not always register as the subject intended.  

Prepar3D Flight Simulator. Lockheed Martin’s 
Prepar3D flight simulator was used as a second performance 
task. Subjects were given control of an aircraft and the task 
was broken down into 5-one minute subtasks. During minute 
one they were asked to maintain level flight at an altitude of 
3000 ft. with a heading of 180 degrees at speed of 180 knots. 
In minute two, they were asked to maintain the same direction, 
but increase their altitude to 4000 ft while never increasing 
altitude at rate less than 1000 ft/min. They then maintained 
4000 ft for another minute before decreasing again to 3000 
and maintained that altitude for the final minute. To create 
multiple difficulty levels the environment in which the plane 
was flying was changed. In the “easy” condition there was no 
wind and no turbulence, however in the harder condition 
winds of over 30 knots and severe turbulence affected the 
aircraft’s position, causing high levels of difficulty 
maintaining the desired heading and altitude.  

C. Physiological Sensors 

During testing days subjects’ physiological signals were 
measured using BrainVision EEG system with electrodes 
arranged according to the standard 10-20 system [15]. 
Additional BrainVision electrodes placed on the collarbone 
recorded electrocardiogram (ECG) for HRV analysis. An SMI 
eye tracker recorded eye movements and pupilometry. 

D. Data Processing and Computational Models 

Model Development and Performance Estimation. We 
wanted to understand the impact of traditional signal 
processing methods on our ability to develop transferable 
human performance models.  We baseline corrected the EEG 
data using the average Welch’s Power Spectral Density (PSD) 
computed from each individual’s resting state “eyes-open” 
session and removed the data for the first and last 10 seconds 
for each trial.  We computed the PSD for each task, using 
Welch’s method over 1 second interval of data. For each 

channel and frequency bin, the corresponding baseline PSD 
average was subtracted from the task PSD. Each resulting 1-
second interval was used as a unit of data for training or 
testing during model development and validation. 

The data was tested in two models a RBF SVM model 
(shallow model) and a neural network model (deep belief 
network). The deep belief network structures were Gaussian-
Bernoulli Restricted Boltzmann Machine (GB-RBM) 
classifiers based upon Masayuki Tanaka’s code [16]. We 
estimated appropriate learning rates, learning step sizes, 
hidden layer sizes, and drop rates based on successive 
modeling performance during automated model tuning.  We 
tuned models via sequential grid tuning approach; for a 
particular layer size and drop rate, a grid of step rates (0.1, 0.2, 
0.3….) was evaluated. A step rate is then selected based on 
highest mean AUC and is used for subsequent modeling. The 
process is repeated for determining drop rates (0, 0.25, 0.5, 
0.75…). For all models developed, the layer size chosen for 
use in determining the optimal learning rate was 100; the drop 
rate used for selection of optimal learning rate and hidden 
layer size was 0.5. All human data were standardized via z-
score scaling prior to modeling.   

Data Analysis. For each of the preprocessing strategies 
outlined above, Receiver Operating Characteristic (ROC) 
curves were analyzed and areas under the ROC curve (AUCs) 
are reported.  An AUC of 0 refers to no prediction ability of 
the model, 0.5 denotes chance prediction, and 1.0 denotes 
perfect prediction of the model. Here we report the average 
and standard deviation of AUCs based upon 25 rounds of 
cross validation.  The predictions are based on a binary 
decision for the model. The model predicts if the current test 
data that is provided to the model is above or below the 
median score for the task.  
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Fig. 2. Example seen from Prepar3D cockpit (left) task 
instructions (right) 



Cross Validation. In one of our approaches to cross-
validation, we randomly assign 75% of the subjects (all trials) 
as a training set, and withhold the remaining 25% of subjects 
as a validation set.  This is key to the approach, and reflects 
the transferability of human performance indicators without 
prior knowledge. It is important to note that since a developed 
model here has not been trained on any prior data from the 
validation set individuals, one would expect modest predictive 
ability. We compared this to other modeling strategies where 
data were withheld such that some data from each individual 
was included in both the training and testing set. We tested 
this by withholding a single trial from each individual 
randomly for the validation set (and the rest of the trials were 
part of the training set). In addition, we performed training 
modeling experiments where a subset of all subjects trials 
were included in the validation subject’s, the balance of data 
(75%) remained in the training set. 

Sensitivity Analysis. After the model results were tested 
we re-ran the best performing models with either a single set 
of signals from a particular sensor (i.e. eye tracking), a single 
EEG electrode placement or a single EEG signal band to 
determine the role of each signal in the broader predictive 
models 

III. RESULTS 

A. Neural Network Models 

The neural networks showed significant differences in 
performance based on the type of model used (parameters 
chosen), type of training performed within the model and the 
specific task, data not shown. The performance also differed 
based on the type of task being performed, Fig. 3. The neural 
network models performed with higher accuracy 0.80 +/- 0.01 
performance prediction accuracy when predicting the 
Prepar3d task as opposed to 0.76 +/- 0.01 during the Snake 
task. 

B. RBF SVM Model 

The RBF SVM model also showed difference in 

predictions between the types of tasks  The performance also 
differed based on the type of task being performed, Fig. 3. The 
neural network models performed with higher accuracy 0.81 
+/- 0.01 performance prediction accuracy when predicting the 
Prepar3d task as opposed to 0.79 +/- 0.01 during the Snake 
task. 

C. Sensitivity Analysis 

After testing with a full set of data we systematically tested 
how each signal independently performed in predicting a 
subjects performance level. The results, shown Fig. 4, show 
that some signals have higher prediction performance 
measures (Beta Band of the EEG signal 72%/68%) than others 
which were relatively non-predictive (EOG blink 58%/51%). 
The sensitivity analysis did show that no single physiological 
signal could individually predict the performance that a 
combined system measures. 

IV. DISCUSSION 

As science pushes to obtain as much physiological data as 
possible in order to understand how human performance is 
holistically defined, they will rely on more complex 
computational models. This “more is better” approach may be 
beneficial for investigative purposes, but as we collect data we 
must systematically identify the best modeling approaches and 
eliminate those signals and sensors that do not contribute to 
predictivity. The results of the experiments in this study show 
that how the data modeled can create large variations in 
overall predictive power. In order to choose the correct 
computational model and the correct signals, one must take 
multiple factors into consideration, which we will discuss 
here. 

A. Physiological Sensors 

In this experiment we chose multiple physiological sensors 
that would record measurements that have been linked to 
cognitive workload levels. From modeling on individual 
feature types, we showed that EEG features contributed 
significantly more to predictivity than ECG, EOG, and eye 
tracking features combined. Although the number of inputs 
into the model were not equal (e.g. n=26 for Beta Mid and 
n=19 for non-EEG feature inputs as shown in Fig. 4), the 
models were independently tuned based on input. Hence it is 
more likely that the signals themselves do not convey 
appropriate information from which the model can learn, 
rather than a limitation due to model parameter specification. 
We are currently working on integrating different features 
derived from ECG signal that might be more sensitive to 
autonomic balance and drive, as well as adapting alternative 
methods for blink analysis in EOG signal. As adding more 
features increases the computational burden, we have also 
looked at feature reduction. Preliminary results from models 
in which EEG data is separated into broad bands (i.e. Alpha, 
rather than Alpha High and Alpha Low) suggest that the 
additional information gained is negligent in light of the 
computational burden in processing and modeling on double 
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Fig. 3 Model Performance by Task 



 

computational double the features.  

Another aspect of signal processing that future studies 
should evaluate is the temporal alignment of physiological and 
behavioral data. When using modeling approaches that only 
associate inputs and output of a single observation, it is critical 
to ensure the data is synchronized in time. Given synchronized 
data, it is important to establish the appropriate integration 
window size per signal type and the delay of signal change 
manifesting in behavior. For example, cortical signals 
fluctuate on the order of milliseconds, while HRV is on the 
order of seconds. Further, precise timing may vary depending 
on what modalities and/or level of processing is necessary to 
complete a task. Alternative models capable of learning 
patterns over a series of contiguous inputs may offer a way to 
compensate for this issue. However, to avoid a “black box” 
approach, such a model would need to be decomposable 
enough to allow insight on its derived temporal parameters 
and corresponding contribution value, such as rate of change 
per input type. 

B. Task Design 

Our original predictions were that workload would be low 
and performance high during the easy conditions, and as the 
task became more difficult the workload would increase and 
performance would fall below the median. However a one-to-
one relationship does not exist between workload and 
performance, as has been demonstrated in studies comparing 

workload and performance in individuals with varying levels 
of expertise [13]. To account for this, subjects were screened 
for having little to no experience with either type of task and 
received an equal amount of time to train on each task. The 
difficulty levels of the tasks were also designed to require 
drastically different levels of workload. For example, during 
the easy flight simulator condition, to maintain constant 
altitude, heading and speed the subject simply needed to hold 
the flight stick steady and pull back with minimal force to 
change altitude. For the hard level, independent of expertise, 
large effort and attention was needed as the winds and 
turbulence changed the planes course affecting all 
performance levels agnostic to how well the subject controlled 
the plane. Similarly the Snake game speed on the easy level 
was slow enough that avoiding the walls was a simple task 
and subjects were able to control the snake and comfortably 
increase its length without much pressure. When switched to 
hard, the subjects not only had to increase concentration based 
on the speed of the snake, but as an unattended consequence 
of our task not recording every keystroke, subjects had to 
change strategies in real time to compensate for keystrokes not 
responding, theoretically increasing workload levels. The 
performance graphs of the easy and hard conditions of each 
task showed distinct distributions in performance. While the 
trend comparing model performances was consistent across 
tasks, there were significantly greater differences in the flight 
simulator task over the snake task. This difference may be 
attributed to multiple discontinuities between the two tasks. 

 
Fig. 4 Sensitivity Analysis 



While the flight simulator had distinct quantitative goals 
(altitude, heading, speed, feet/minute) that every subject aimed 
for, the snake task allowed for a subjective discretion if the 
priority was to stay “alive” or to eat as much food as possible 
to obtain the same performance measure. Second, the altered 
controls in the hard snake task may have caused subjects to 
adopt a different strategy in how they approached the food. 
For instance, in the easy task subjects could make quick turns 
to avoid the wall or obtain food, but in the hard task they 
might opt for larger turns to compensate for the delay in 
response to keystrokes, thus lowering their score or potentially 
frustrating some subjects, causing workload changes 
independent of the task difficulty levels. 

C. Training Method 

When we trained both the deep belief networks and the 
RBF SVM on a 75% subset of the subjects and tested using 
the remaining 25% of the subjects the models performed only 
at a ~50% prediction accuracy (validation). Under our 25 
model runs, altering which subjects were part of the training 
and which part of the testing the best results were 65% for the 
RBF SVM and 59% for the Deep Belief Networks. These 
results showed that while some distribution of the subjects 
caused the model training to be more representative of the 
larger population, the models were still poor at predicting 
performance based off of workload measures. The fact that 
multiple models showed this performance led us to believe 
that even with similar performance, there was not a standard 
workload measure that worked consistently across individuals 
for either task.  

The model was tested for its ability to accurately predict 
performance from individualized workload measures. To do 
this, we trained the deep belief networks in a number of other 
ways to determine if we could generate a better performing 
model. The trained the models were tested using a subset of 
each subjects’ data the models performance significantly 
improved for the Deep Belief Network, but we saw no 
improvement in the RBF SVMs. First we tested by assigning a 
single session of each subject to train and tested on the 
remaining sessions (both models), second we randomly chose 
data points from each subject across all of their data (deep 
belief only) allowing each subject and testing session to be 
represented in both the training and testing model runs. Both 
model runs improved the performance of the DBN, the later 
showed the greatest improvement accuracy predicting up to 
~80% of the tests in the flight simulator task. The worst cross-
validation model performance with this modeling technique 
was equivalent to or only slightly better than the best general 
model where there was no training/testing overlap. The 
model’s improved ability to accurately predict performance 
form physiological workload measures when all subjects are 
represented in both the training and testing sets illustrates the 
extreme differences within physiological measures across 
individuals corresponds to the same behavioral outcomes. 
Only when a model is personalized for the intended user and 
possibly to a specific task, will it be reliable and useful as a 
predictive model. 

We posit that for models to perform all participant sessions 
need to be represented in the training session. This is due to 
learning that may occur within subject across sessions. It is 
not only necessary to account for individualized differences 
when developing a computational model to predict 
performance or categorize workload, but a model most also 
account for learning that occurs over time. It has been shown 
that even experts in a given field have been shown to change 
performance and continue learning, albeit at a slower rate, 
thus models must account for this even in cases when naïve 
subjects are not being used. A possible method around this is 
to find subjects who may have had similar performance 
learning curves and similar physiological workload measures. 
Using a combination of the current users model and “future” 
models from the similar minded individual. 

This may be extremely complicated though and will 
require future work. This work will examine the ability to 
group subjects based off of current and prior performance and 
create a set of template models to which a subject can be 
quickly matched. The template may then be tailored to the 
individual as the subject improves at the task shortening the 
overall process. By having not one, but a set of models trained 
on only subjects that show the same performance trends we 
posit a high accuracy prediction without a one-to-one 
relationship between number of models and subjects. This set 
of models will be the only possibility to create real-time 
modeling that will be necessary if adjustments to the subjects’ 
performance or tasking are desired in timely fashion.  
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