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Abstract—This paper presents a novel tandem human-machine
cognition approach for human-in-the-loop control of complex
business-critical and mission-critical systems and processes that
are monitored by Internet-of-Things (IoT) sensor networks and
where it is of utmost importance to mitigate and avoid cognitive
overload situations for the human operators. The approach is
based on a decision making supervisory loop for situation aware-
ness and control combined with a machine learning technique
that is especially well suited to this control problem. The goal is to
achieve a number of functional requirements: (1) ultra-low false
alarm probabilities for all monitored transducers, components,
machines, systems, and processes; (2) fastest mathematically
possible decisions regarding the incipience or onset of anomalies
in noisy process metrics; and (3) the ability to unambiguously
differentiate between sensor degradation events and degradation
in the systems/processes under surveillance. The novel approach
that is presented here does not replace the role of the human
in operation of complex engineering systems and processes,
but rather augments that role in a manner that minimizes
cognitive overload by very rapidly processing, interpreting, and
displaying final diagnostic and prognostic information to the
human operator in a prioritized format that is readily perceived
and comprehended.

Index Terms—Prognostics; decision support; machine learn-
ing; sensor networks; situation awareness; control

I. INTRODUCTION

When a human operator is controlling a system, it is
essential for the operator to have good situation awareness
(SA) so that the operator can take appropriate actions. This is
especially difficult for complex systems that have a very large
number of sensors and control parameters. It is even more
difficult, or even impossible, for a human operator to control
a complex system during an emergency situation because such
situations put considerable pressure on the operator to make
decisions very rapidly. Consequently, it is very important to
avoid the onset of cognitive overload by human operators.
Furthermore emergency situations typically produce multiple
faults, numerous alarms, conflicting data and incomplete,
inaccurate or missing information due to failing or failed
sensors. There are now systems that have been developed
to assist human operators to achieve situation awareness.

Examples include the Situation Awareness Assistant (SAWA)
for battlefield SA [1] and the National Information Sharing
Consortium (NISC) for the emergency management commu-
nity and first-responders [2]. However, these systems do not
address all of the issues that arise in complex systems and
emergency situations. SAWA, for example, does not have a
mechanism for dealing with failing or failed sensors that can
produce inaccurate, misleading or no data at all. NISC is only
concerned with information sharing and interoperability and
does not address cognitive overload or the problem of failing
or failed sensors.

In this paper, we present a novel approach to human-
machine cognition for human supervisory control applications
that addresses both the system complexity and sensor failure
issues discussed above. Our approach is intended to assist the
operators of complex systems in two ways. First, by helping
the operators to deduce the state of the system from the
(possibly faulty) sensor data. Second, by providing expert
advice on possible actions, even in the face of incomplete
knowledge. Our approach is based on situation theory and
uses information fusion technologies to help solve these two
problems.

This paper is organized as follows. In Section II, we
present our approach to supervisory control assistance. This
approach involves two main components, one to deal with the
complexity problem and another to deal with faulty sensor
data. We elaborate on each of these components in the next
two sections. The first component is the subject of Section III,
and the second is the subject of Section IV. As our approach
utilizes machine learning (ML) techniques, we compare the
techniques we use to other ML techniques in Section V. The
method whereby our approach deals with missing and faulty
data is presented in Section VI. We conclude in Section VIII.
Our approach has been validated in the case of nuclear power
plant supervisory control, and we use this scenario and similar
ones to illustrate our approach throughout the paper.



II. THE SUPERVISORY CONTROL LOOP WITH
PROGNOSTICS

Our approach to supervisory control is based on the work
of John Boyd who explored situation awareness in the 1960s.
John Boyd’s analysis was formulated as the OODA loop (Ob-
serve, Orient, Decide, and Act) [3] involving human cognitive
processes. Boyd’s work was done long before the discovery
and evolution of many of the modern knowledge intensive
modeling, reasoning, and ML technologies. We combined the
modern AI technologies with the OODA loop to formulate the
Situation Awareness CARE Loop, named after the four modes
of reasoning: termed Classification, Assessment, Resolution,
and Enactment in the Situation Awareness Loop [4]–[6]. We
present the formalization of the OODA loop in Section III.

It has been known since the inception of human-machine
cognition science that it is extremely improbable that humans
will receive and be confused by 2 or more events creating only
one alarm, rather, the situations that initiate human operator
confusion and rapidly lead to cognitive overload scenarios, are
where a single event creates multiple alarms [7]. The novel
system reported in this paper implements an advanced pattern
recognition module, called the Multivariate State Estimation
Technique (MSET) [8], which is also known in the literature
as Similarity Based Modeling [9] This system can rapidly
process, interpret, and display final diagnostic and prognostic
information to the human operator in a prioritized format that
is readily perceived and comprehended. While MSET is an
ML technique, MSET differs from other ML techniques, such
as neural networks (NNs) [10] and support vector machines
(SVMs) [11], with respect to human comprehensibility. This
allows the very rapid sequences of hypothesis evaluations
to identify and filter invalid/extraneous/faulty alerts (e.g.,
from degraded, failed, or missing sensors) to be offloaded
from the human to the ML decision aid. As a result, the
human can maintain the highest state of situation awareness
throughout system-upset events. MSET has previously been
applied successfully for operator decision aids and for humans
administrating complex engineering assets [8], [12]–[14]. In
this paper we extend the value proposition for MSET by
integrating it with KIDS for avoidance of cognitive overload
scenarios for general human-in-the-loop supervisory control
of complex hardware-software assets. We present more details
about MSET in Section IV.

Model-based reasoning is reasoning about the behavior of
a system using a highly accurate nonlinear, non-parametric
model based on the structure and function of the system.
Ideally, well constructed models will also aid in providing
explanations of the state and behavior of the system. This
is an essential capability for realizing the activity graph in
KIDS ontology. This capability allows a human operator to
“scroll back” along the sequences of decisions that were
made, whether in real time while events are evolving, or in
a post-incident analysis to construct a detailed root-cause-
analysis of an episode. Furthermore, this capability is critical

for systems that have human safety significance (e.g., nuclear
plants, oil/gas production facilities, transportation and avionics
systems). The capability is also extremely vital in situations
where the asset owners want to learn from degradation sce-
narios, to better mitigate/avoid similar events in the future.
Section VI discusses this capability in more detail.

Expert systems are sophisticated computer programs that
manipulate knowledge to solve problems efficiently and effec-
tively in a narrow problem area. An expert system provides
high-level expertise to aid in real-time cognitive problem
solving as part of enhanced situation awareness for the human
operator [3]–[5]. The expertise (knowledge) should be explicit
and accessible. Two capabilities of expert systems that are
particularly important in this work are predictive modeling and
“root cause” sequence-of-event reconstruction. A vital element
of the root cause explanation is disambiguation between false
alarms (also called Type-I errors in statistical process control),
from real anomalous behavior in the monitored systems or
processes. A predominant cause of false alarms in conventional
machine-learning prognostics is the fact that most conventional
surveillance methodology is threshold based. Section VII
below shows how threshold-based ML prognostics result in
either lower sensitivity for annunciation of anomalies, or
higher false alarm rates, or both. MSET is integrated with
a sequential probability ratio test (SPRT) and overcomes
the endemic problem of lower prognostic sensitivity versus
higher false alarm rates, producing a human decision aide
that mitigates alarm complexity and minimizes the prospect
of cognitive overload for human operators.

It is in these kinds of real-time problem-solving situations
that many of the limitations of humans are at their most
apparent. Their tendency to overlook relevant information, to
respond too slowly and to unavoidably succumb to some de-
gree of panic when the rate of information flow is too great all
contribute to lower than desired levels of performance. It is the
goal of the research presented in this paper to provide effective
decision support in order to transform the environment from
an inefficient, data-intense, high cognitive demand situation
to an efficient, knowledge intensive, information-rich, high-
performance human-machine system. Such decision support
is designed to enable a human decision maker to maintain
peak situation awareness during an emergency situation.

III. KIDS SITUATION AWARENESS

KIDS manages data, knowledge, and processes. KIDS iden-
tifies four categories of data (Facts, Perceptions, Hypotheses,
and Directives) and four categories of knowledge for reasoning
(Classification, Assessment, Resolution, and Enactment) as
well as the Relevance reasoning to select the data that form the
situations for subsequent steps in the reasoning process. Facts
constitute sensor measurements, which are quantitative. Facts
are classified to derive perceptions, which are compact qual-
itative interpretations of facts designed to be easily compre-
hended by the human brain. Perceptions are assessed to derive



one or more hypotheses, which are used to derive directives.
Directives are action plans proposed to resolve the symptoms
and root causes of the anomalies. Directives are enacted by
control systems or agents in the external world. The enactment
of the directives will create new facts. The loop starts again
until the problem on hand has been solved. The CARE loop
is a dynamic system driven by the deductive (classification),
abductive (assessment), and inductive (resolution) reasoning
processes. The reasoning processes are applied in the proper
sequence as shown in Figure 1.

Fig. 1. Diagram of the KIDS CARE loop

The four categories of data require state of the art data
management. This starts with the support of structured and
unstructured data and with extensibility for domain specific
data. Temporal support with provenance and selective long
term retention is a must as is real time processing of queries
(rules, models). The management of data has to be done with
rich declarative interfaces. On-line transaction processing as
well as real-time analytics have to be handled concurrently
and with great efficiency. The relevance of data for different
situations must be filtered efficiently with highly scalable
expression filters.

The Classification knowledge – transforming facts into
perceptions – is primarily represented by deductive reasoning.
Some Classification knowledge that produces prediction or
norm may involve inductive reasoning as well. The com-
putation model for classification includes Auto-Associative
Memory Models [15] (including Auto-Associative Neural Net-
works, Auto-Associative Kernel Regression, Auto-Associative
MSET), Support Vector Machines [16], naı̈ve-Bayes classi-
fier, Clustering, Association Rules, Decision Trees, Cognitive
computing, etc.

The Assessment knowledge – transforming perceptions
into hypotheses – is typically implemented by abductive
reasoning [17] that derives the Hypotheses from Perceptions.
The computation model for assessment includes SPRT [18],
Bayesian Belief Network [19], and Least-Squares Optimiza-
tion or Regression of solutions for inverse problem [20].

The Resolution knowledge – transforming hypotheses into
directives – involves inductive reasoning and making de-
cisions under the uncertainty of outcomes by considering
the relative merit of the different outcomes and the associ-
ated payoffs/costs. The computation model for resolution in-
cludes Bayesian Belief Network extended with decision nodes
and payoff/cost nodes, known as Influence Diagrams [21],
Dempster-Shafer theory [22], [23], Decision Trees, and Prog-
nosis of Remaining Useful Life.

The Enactment knowledge – transforming directives into
actions in the outside world – consists typically of control
structures encoded in scripts, plans, schedules, workflows,
and business processes. If the capturing of new facts is part
of the enactment the fact management will be notified to be
able to supervise the timely delivery of the expected facts. The
enactment activity involves:

• Supervise the compliance to directives: The timely
delivery of expected facts is a fundamental requirement to
understand the current situation. The task is to supervise
simple rules; which is a task that is well understood.

• Verify the quality of the facts: Collecting facts is bound
to be an erroneous process. Facts may be incomplete
(measurements are done but there were problems in the
transmission), they may be stale (typically due to trans-
mission delays), may be wrong (due to sensor errors).
The task of verifying the quality of the data requires a
technology such as MSET and the Mimir data reduction
and analysis tools [24]. MSET has been proven to be a
powerful tool that can identify issues in sensor data and
swap in a highly-accurate inferential variable to correct
the data. Big Data systems typically exhibit varying levels
of quality (due to missing, delayed, or incorrect data). To
derive the high-level Perceptions, the unstructured data is
typically transformed into a relational model by Extract-
Transform-Load (ETL) operations and by relational join
operations. Mimir introduces a database query primitive
called lenses, which provide varying degree of precision
of the query results in the Adaptive Schema Database [25]
or Probabilistic Database [26] settings. Mimir propagates
the uncertainty model of the original unstructured data to
the query results as the data goes through any number of
ETL and join operations in the query plan.

Subsequent to the Enactment activity, the Classification
activity involves:

• Determine if there are any actionable perceptions that
need to be created or updated: The most important
task in processing facts is to determine if there is any
actionable information. This can be done by classifying
incoming facts and associating a risk or opportunity
rating. To avoid cognitive overload, it involves human
operators only if there is a need and it represents the
data in a very compact qualitative language.

MSET and SPRT technologies comprise the core of the KIDS



CARE Loop. In the subsequent sections, we will focus on
the capability of MSET to classify the perceptions and the
capability of SPRT to generate and assess the hypotheses.

IV. THE MULTIVARIATE STATE ESTIMATION TECHNIQUE

MSET is a practical and versatile classification model
for the KIDS CARE loop that provides prognostic system
health monitoring of business-critical systems. It comprises a
comprehensive methodology for proactively detecting and iso-
lating failures, recommending condition-based maintenance,
and estimating in real time the remaining useful life (RUL)
of critical components. Oracle has over the last 15 years
developed and patented a suite of advanced pattern recognition
innovations that leverage MSET prognostics for components,
subsystems, and for integrated hardware-software systems in
enterprise data centers [8], [27]. The key enabler for achieving
Electronic Prognostics capabilities is a continuous system
telemetry harness (CSTH) which collects and preprocesses
any/all types of time series signals relating to the health
of dynamically executing components and subsystems [8].
These time series provide quantitative metrics associated with
physical and performance variables. The magnitude of the
problem is illustrated by the fact that a typical data center now
contains up to one million physical sensors inside the informa-
tion technology assets. These sensors measure temperatures,
voltages, currents, power metrics, fan speeds, vibration and
many other variables. Performance variables include processor
loads, memory usages, throughputs, queue lengths, and many
other metrics.

The CSTH signals are continuously archived to an offline
circular file (such as a “Black Box Flight Recorder”), and are
also processed in real time using the advanced pattern recog-
nition technique MSET for proactive anomaly detection and
for RUL estimation with associated quantitative confidence
factors.

The most significant advantages of our approach to super-
visory control are the following:

• The ability to proactively catch very subtle incipient
disturbances, even when the disturbance signature is a
tiny fraction of the inherent variance in the monitored
metrics

• Ultra-low probabilities for false alarms and missed alarms
• Separately specifiable probabilities for false and missed

alarms1

• Real Time signal validation and sensor operability vali-
dation2

• Low compute cost for large-scale prognostic monitoring
applications, i.e., lots of sensors and/or high sampling

1Conventional equipment surveillance approaches have a “sea saw” rela-
tionship between false and missed alarms.

2Most false and missed alarms in prognostic system health management of
business-critical and even safety-critical systems are due to sensor degradation
events.

rates. (In many past “bake off” comparisons between
MSET and NNs, MSET achieves an order of magnitude
higher sensitivity for catching subtle disturbances in noisy
process variables, with an order of magnitude lower
compute cost)

• Remaining Useful Life estimation with quantitative con-
fidence factors3

• Highly accurate “inferential variable” capability. (i.e., one
doesn’t have to shut down a million dollar asset because
a $2 internal sensor failed. MSET can swap in a highly-
accurate inferential variable, so the sensor fix/replacement
can be postponed to a scheduled maintenance window).

The benefits listed above can help IoT prognostic system
health-monitoring applications achieve higher availability with
lower operation and maintenance costs. These benefits can be
achieved by extending the prognostic surveillance envelope to
include an IoT customer’s production assets, programmable
logic controllers, power supplies, motor-operated valves, and
interconnecting networks.

V. COMPARISON OF MSET WITH OTHER ML TECHNIQUES

In this section we justify our choice of MSET compared
with other ML techniques such as NNs and SVMs. While
these other ML techniques are well-known and popular, we
will see that MSET has key advantages for human-in-the-
loop supervisory control that the other ML techniques do not
provide.

What distinguishes human-in-the-loop supervisory control
over other applications of ML techniques is the requirement
that the operator be given a rigorous explanation for the advice
being presented. In other words, the technique used must be
amenable to a rigorous reliability assessment methodology. To
achieve this requirement, it is vitally important to be able
to conduct a rigorous propagation-of-uncertainty analysis of
the “expert system” hypothesis decisions following system
upset events. Mission-critical and safety-critical industrial ap-
plications can have huge liability impacts if operators make
incorrect decisions as a result of faulty prognostic recommen-
dations from the surveillance software. With ML techniques
such as NNs and SVMs, it is not possible to conduct a
rigorous propagation-of-uncertainty analysis a-priori, because
of the stochastic optimization of the weights during setup and
training. After a NN or SVM is set up and the weights become
fixed, then it is possible to conduct an empirical analysis, e.g.,
by adding uncertainty to various input signals and examining
the impact on uncertainties for output signals. This approach
is called a “black box” uncertainty analysis and is adequate
for some classes of applications. However, for safety- and
mission-critical applications, a black box uncertainty analysis
is not acceptable. No matter how cleverly one designs pertur-
bations on various permutations of input signals to the black

3RUL capability is a key enabler for “Condition Based Maintenance” of
customer IoT assets.



box, it is not possible to prove through analytical propagation-
of-uncertainty analyses that there is not some combination of
input perturbation signatures that may cause a false alarm or
may miss an alarm. False alarms are obviously dangerous for
human-in-the-loop applications, and missed alarms can have
disastrous consequences.

By contrast, MSET uses a straightforward, deterministic
computational algorithm that is readily amenable to rigorous
“propagation of uncertainty” reliability analysis. This means
that one can apply well established reliability assessment
of MSET for any safety-critical applications and compute a
quantitative mean time between failure (MTBF) for the expert
system software embodying MSET, where a “failure” of the
expert system is a false alarm or missed alarm. This is a
vital capability and is the reason that in 2000 the US Nuclear
Regulatory Commission (NRC) formally accepted MSET for
commercial nuclear plant applications. At the same time, the
NRC disallowed the use of NNs, unless the utility plant owners
could prove in the future that a NN implementation could pass
the rigorous propagation-of-uncertainty analysis required for
prognostic software applications in nuclear plant applications.

MSET also possesses advantages over Neural Networks
for real-time prognostic applications in terms of prognostic
accuracy, compute cost, and memory footprint. However, the
primary reason that MSET was selected is the requirement of
a rigorous reliability assessment methodology.

VI. INFERENTIAL SENSOR SUBSTITUTION

We now discuss one of the main features of our approach
to supervisory control assistance: the ability to detect failing
and failed sensors and to infer their readings. This capability
is important for preventing operator cognitive-overload when
supervising and controlling complex systems or emergency
situations. Our approach can generate highly accurate inferen-
tial sensors when instrumentation or individual sensors should
degrade intermittently or fail completely in service. Dense
sensor IoT applications can contain thousands of physical
transducers. Business-critical enterprise and cloud data centers
can contain > 1M sensors for a medium sized data center.
Even during normal, non-emergency operation of industrial
and business assets, it is often the case that sensors have a
shorter MTBF than the assets the sensors are deployed to pro-
tect. MSET combined with KIDS has the capability to detect
the incipience or onset of sensor decalibration bias (sensors
drifting gradually out of calibration) and all known modes
of sensor degradation in operating assets, and to distinguish
sensor degradation from anomalous system behavior. A human
operator would be confused by spurious alarms from one or
more individual sensors, and would be unaware that a sensor
has failed. A particularly insidious failure mode is what is
known as a “stuck at” fault, i.e., it retains its last reading but
no longer responds to the physical metric it is measuring. 4

4A stuck-at sensor will never trip a high/low threshold alarm.

For degrading or failed sensors, MSET detects the degra-
dation and autonomically swaps in a highly accurate MSET
estimate, called an inferential sensor, that is computed on the
basis of covariance with other correlated sensors.

Figure 2 shows an actual “stuck at” sensor fault in a large
business-critical enterprise computer server that possessed
over 600 physical sensors. The metric plotted is a real-time
temperature signal in one of 16 internal power supplies that
supply the processors with power. The blue signal is the real
digitized time series measured sensor signal, superimposed
on the red inferential signal from MSET. Although it would
be obvious to a human looking at the graphic in Figure 2
that the sensor suddenly failed with a “stuck at” fault, the
fact that there are over 1M sensors in a typical data center
makes it impossible for humans to watch the sensor signals
on a 24x7 basis. Moreover, because a “stuck at” fault will
never trip a high/low threshold, this failure mode is often
undiscovered and can lead to catastrophic system failures,
especially when the sensor signal is used in a feedback-control
loop. Although in safety-critical industries it is common to
provide triple redundancy for sensors, it is cost prohibitive to
implement triple redundancy in many IoT industries, including
in enterprise computer assets.

Fig. 2. Illustration of the use of MSET for inferential sensing

In Figure 2, the blue signal is the real digitized time series
measured sensor signal, superimposed on the red inferential
signal from MSET. When the physical transducer fails in
service, the degraded signal is masked out and the MSET
inferential signal is substituted into the data acquisition ag-
gregation instrumentation.

For intermittently failing instrumentation that results in
missing values in the monitored metrics, MSET performs
optimal missing value imputation. It is important to point
out here that we are not using conventional “missing value
interpolation” algorithms that “fill in” missing values in a uni-
variate time series using conventional interpolation schemes.



Conventional forms of univariate missing value interpolation
algorithms suffer from the fact that they are inherently a
“lossy” computation. In other words, no matter how cleverly
one interpolates to replace a missing value in a univariate
time series, the true value could be significantly different. For
missing value imputation via MSET, MSET is using correla-
tion patterns with other sensors in a nonlinear, non-parametric
algorithm to compute a highly accurate imputed value for
signal continuity so that human operators are performing
control actions on the basis of fully validated continuous
telemetry streams.

VII. THE SEQUENTIAL PROBABILITY RATIO TEST:
AVOIDANCE OF FALSE ALARMS

The combination of MSET and SPRT is a practical and
versatile Assessment model for CARE Loop to unambiguously
differentiate between sensor degradation events and degra-
dation in the systems/processes under surveillance. It is an
important capability for the root cause analysis.

Many industrial processes have embedded diagnostic sys-
tems and online statistical process control techniques that
perform real-time analysis of process variables. Most of these
systems employ simple tests such as threshold, mean value +
three-sigma, statistical process control thresholds, etc. These
tests are sensitive only to gross changes in the process mean, or
to high step changes or spikes that exceed some threshold-limit
test to determine whether or not a failure has occurred or a
process is drifting out of control. These conventional methods
suffer from either large false alarm rates (if thresholds are
set too close) or high missed (or delayed) alarm rates (if the
thresholds are set too wide).

For new dense-sensor IoT monitoring applications in indus-
trial manufacturing facilities, utilities, and transportation as-
sets, false alarms are very costly in terms of plant or physical-
asset down time. Missed alarms can be even more costly when
incipient problems are not identified and expensive assets fail
catastrophically.

MSET provides a superior surveillance tool because it is
sensitive not only to disturbances in signal mean, but also to
very subtle changes in the statistical moments of the monitored
signals and the patterns of correlation between/among multi-
ple types of signals. MSET employs SPRT [18], [28]–[30],
which provides the basis for detecting very subtle statistical
anomalies in noisy process signals at the earliest mathemat-
ically possible time, thereby providing actionable warning-
alert information on the type and the exact time of onset of
the disturbance. Instead of simple threshold limits that trigger
faults when a signal increases beyond some threshold value,
the SPRT technique is based on user-specified false alarm and
missed alarm probabilities, allowing the end user to control
the likelihood of missed detection or false alarm. For sudden,
gross failures of sensors or system components the SPRT
annunciates the disturbance as fast as a conventional threshold

limit check. However, for slow degradation that evolves over a
long time period the SPRT raises a warning of the incipience
or onset of the disturbance long before it would be apparent to
any conventional threshold based rules. Slow degradation can
occur for a variety of reasons such as a gradual decalibration
bias in a sensor or a very subtle voltage drift due to a variety of
aging mechanisms that cause resistances to change very slowly
with age. Still other reasons for slow degradation include:
bearing degradation, lubrication dryout, a buildup of a radial
rub in rotating machinery, and the gradual appearance of
new vibration spectral components in the presence of noisy
background signals.

MSET is a nonlinear, non-parametric regression modeling
method that was originally developed by Argonne National
Laboratory for high-sensitivity proactive fault monitoring ap-
plications in commercial nuclear power applications. It has
since been spun off to a variety of other mission-critical
and safety-critical industries. Oracle was the first company to
develop MSET-based prognostic tools for enterprise comput-
ing health-monitoring applications that are truly dense-sensor
applications. (A small 4U server now has more than 400
sensors; a large engineered system contains 3400 sensors; and
a medium size data center has over 1M sensors). Oracle and
our university collaborators are now extending proven MSET
prognostics to dense-sensor challenges in IoT [27], [31], [32].

The overall MSET framework consists of a training phase
and a monitoring phase (Figure 3 below). The training pro-
cedure is used to characterize the monitored equipment using
historical, error-free operating data covering the envelope of
possible operating regimes for the system variables under
surveillance. This training procedure evaluates the available
training data and (automatically) selects a subset of the data
observations (using a similarity operator) that are determined
to best characterize the monitored asset’s normal operation.
It creates a stored model of the equipment that is used in
the monitoring procedure to estimate the expected values of
the signals under surveillance. In the monitoring step, new
observations for all the asset signals are first acquired. These
observations are then used in conjunction with the previously
trained MSET model to estimate the expected values of the
signals. MSET estimates are extremely accurate, with error
rates that are usually only 1 to 2 percent of the standard
deviation of the input signal. Incidentally, the MSET estimate
for a signal originating from any physical transducer is more
accurate than the transducer itself. The end-to-end processing
steps taken during the MSET surveillance phase are shown in
Figure 3.

Fig. 3. MSET surveillance phase block diagram



The difference between a signal’s real-time MSET estimate
and its directly sensed value is termed a residual. The residuals
for each monitored signal are used as an anomaly indicator
for sensor and equipment faults. Instead of using simple
thresholds to detect fault indications, MSET’s fault detection
procedure employs the SPRT to determine whether the residual
error value is uncharacteristic of the learned process model
and thereby indicative of a sensor or equipment fault. The
SPRT algorithm is a significant improvement over conven-
tional threshold detection processes in that it provides more
definitive information about signal validity with a quantitative
confidence factor through the use of statistical hypothesis
testing. This approach allows the user to specify false alarm
and missed alarm probabilities, allowing end-customer control
over the likelihood of false alarms or missed detection.

VIII. CONCLUSION

The MSET system comprises a synergistic integration of
the SPRT technique with a data-driven modeling method
to produce a system with unique surveillance capabilities.
Recent large-scale analyses with archived time series signals
have shown that the MSET system surpasses conventional
approaches, including neural networks, auto-associative kernel
regression, and regularized kernel regression using a variety of
criteria. The criteria include sensitivity, reliability, robustness
to unreliable and possibly degrading sensors, simplicity of
training, adaptability when sensor configurations change, and
computational efficiency.

REFERENCES

[1] C. Matheus, M. Kokar, K. Baclawski, J. Letkowski, C. Call, M. Hinman,
J. Salerno, and D. Boulware, “SAWA: An assistant for higher-level fu-
sion and situation awareness,” in Proc. SPIE Conference on Multisensor,
Multisource Information Fusion, vol. 5813, 2005, pp. 75–85.

[2] “The National Information Sharing Consortium,” June 2012 [Online],
Available: http://www.nisconsortium.org/.

[3] J. Boyd, “Destruction and creation,” U.S. Army Command and
General Staff College, Tech. Rep., September 3 1976 [Online],
Available: http://www.goalsys.com/books/documents/DESTRUCTION
AND CREATION.pdf.

[4] D. Gawlick, “Mastering situation awareness: The next frontier?” in 7th
Biennial Conference on Innovative Data Systems Research (CIDR ’15),
Asilomar, California, USA, January 4–7, 2015 [Online], Available: http:
//cidrdb.org/cidr2015/Papers/15 Abstract43GD.pdf.

[5] D. Gawlick, E. Chan, A. Ghoneimy, and Z. Liu, “Mastering situation
awareness: The next big challenge?” SIGMOD Record, vol. 44, no. 3,
pp. 19–24, 2015.

[6] K. Baclawski, E. Chan, D. Gawlick, A. Ghoneimy, K. Gross, Z. Liu, and
X. Zhang, “Framework for ontology-driven decision making,” Applied
Ontology, 2017, to appear.

[7] S. Txafestas, Ed., Knowledge-Based System Diagnosis, Supervision, and
Control. Plenum Publishing Co., 1989.

[8] K. Gross, K. Whisnant, and A. Urmanov, “Prognostics of electronic
components: Health monitoring, failure prediction, time to failure,” in
Proc. New Challenges in Aerospace Technology and Maintenance Conf.
2006, Suntec City, Singapore, Feb 2006.

[9] S. Wegerich, “Similarity based modeling of vibration features for fault
detection and identification,” Sensor Review, vol. 25, no. 2, pp. 114–122,
2005.

[10] D. Kriesel, “A Brief Introduction to Neural Networks,” 2005 [Online],
Available: http://www.dkriesel.com/ media/science/neuronalenetze-en-
zeta2-2col-dkrieselcom.pdf.

[11] J. Shawe-Taylor and N. Cristianini, Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

[12] S. Wegerich, “Condition based monitoring using nonparametric simi-
larity based modeling,” in Proc. 3rd Conference of Japan Society of
Maintenology, 2006, pp. 308–313.

[13] J. Coble, P. Ramuhalli, L. Bond, J. Hines, and B. Upadhyaya, “Prog-
nostics and health management in nuclear power plants: A review
of technologies and applications,” US Dept. of Energy, Tech. Rep.
Technical Publication PNNL-21515, July 2012.

[14] T. Plume, F. Liard, and D. Therkom, “Similarity based modeling for
turbine exit temperature spread monitoring on gas turbines,” in Proc.
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition,
vol. 4, San Antonio, TX, June 2013.

[15] J. Hines, D. Garvey, R. Seibert, and A. Usynin, “Technical review of
on-line monitoring techniques for performance assessment, volume 2:
Theoretical issues,” Office of Nuclear Regulatory Research, U.S. Nuclear
Regulatory Commission, Tech. Rep., May 2008.

[16] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proceedings of the 5th Annual ACM Workshop
on Computational Learning Theory. ACM Press, 1992.

[17] C. Peirce, Reasoning and the Logic of Things. Cambridge, MA: Harvard
University Press, 1992.

[18] A. Wald, A Sequential Analysis. New York: Wiley, 1947.
[19] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. San Francisco: Morgan Kaufmann, 1988.
[20] R. Fletcher, Generalized Inverses for Nonlinear Equations and Optimiza-

tion. Numerical Methods for Non-Linear Algebraic Equations. London:
Gordon and Breach, 1970.

[21] R. Howard and J. Matheson, “Influence diagrams,” in Readings on
the Principles and Applications of Decision Analysis, R. Howard and
J. Matheson, Eds. Menlo Park, CA: Strategic Decisions Group, 1981,
vol. 2, pp. 721–762.

[22] A. Dempster, “A generalization of Bayesian inference,” Journal of the
Royal Statistical Society. 1968, vol. 30, no. 2, pp. 205–247, 1968, series
B (Methodological).

[23] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ:
Princeton University Press, 1976.

[24] A. Nandi, Y. Yang, O. Kennedy, B. Glavic, R. Fehling, Z. Liu, and
D. Gawlick, “Mimir: Bringing CTables into practice,” Oracle Corpora-
tion, Tech. Rep., 2016.

[25] W. Spoth, B. Arab, E. Chan, D. Gawlich, A. Ghoneimy, B. Glavic,
B. Hammerschmidt, O. Kennedy, S. Lee, Z. Liu, X. Niu, and Y. Yan,
“Adaptive schema databases,” in 8th Biennial Conference on Innova-
tive Data Systems Research (CIDR ’17), Chaminade, California USA,
January 8–11, 2017.

[26] N. Dalvi, C. Re, and D. Suciu, “Probabilistic databases: Diamonds in
the dirt,” Communications of the ACM, vol. 52, no. 7, pp. 86–94, July
2009.

[27] A. More and K. Gross, “SimML framework: Monte Carlo simulation
of statistical machine learning algorithms for IoT prognostic applica-
tions,” in Proc. Intn’l Symposium on Internet of Things & Internet of
Everything (CSCI-ISOT), Las Vegas, NV, Dec 15-17, 2016.

[28] K. Gross and W. Lu, “Early detection of signal and process anomalies
in enterprise computing systems,” in Proc. 2002 IEEE Int’l Conf. on
Machine Learning and Applications (ICMLA), Las Vegas, NV, June
2002.

[29] T. Masoumi and K. Gross, “SimSPRT-II: Monte Carlo simulation of
sequential probability ratio test algorithms for optimal prognostic perfor-
mance,” in Proc. 2016 International Symposium on Artificial Intelligence
(CSCI-ISAI), Las Vegas, NV, Dec 15-17, 2016.

[30] J. Hines and D. Garvey, “Development and application of fault de-
tectability performance metrics for instrument calibration verification
and anomaly detection,” J. of Pattern Recognition Research, vol. 1, pp.
2–15, 2006.

[31] K. Gross, K. Vaidyanathan, A. Bougaev, and A. Urmanov, “Round-
robin staggered-imputation (RRSI) algorithm for enhanced real-time
prognostics for dense-sensor IoT applications,” Intl. Conf. on Internet
Computing and Internet of Things (ICOMP’16), Las Vegas, NV, July
25-28, 2016.

[32] K. Gross, K. Vaidyanathan, , and M. Valiollahzadeh, “Advanced pattern
recognition for optimal bandwidth and power utilization for intelligent
wireless motes for IoT applications,” in 17th International Conference
on Wireless Networks (ICWN’16), Las Vegas, NV, July 25-28, 2016.


