Self-Adaptive Dynamic Decision Making Processes

K. Baclawski*, E. S. Chanf, D. Gawlick!, A. GhoneimyT, K. C. Grosst and Z. H. Liuf
*College of Computer and Information Science
Northeastern University, Boston, MA USA
Email: kenb@ccs.neu.edu
tOracle Corporation, Redwood City, CA USA
Oracle Corporation, San Diego, CA USA

Abstract—Decision making is important for many systems
and is fundamental for situation awareness and information
fusion. When a decision making process is confronted with new
situations, goals and kinds of data, it must evolve and adapt.
Highly optimized processes and efficient data structures generally
have the disadvantage of having little flexibility or adaptability
when confronted with new forms of data and new or changing
goals. Consequently, optimized processes may only be locally
optimal and may deteriorate over time. The normal approach
to changing conditions is to manually reconfigure and even
redevelop the system, which can be costly and time-consuming.
In this article. we propose an architecture for the self-adaptation
of decision making processes using flexible data structures and
a process that monitors and adapts the decision making process.
The objective is to have the ability to adapt both data schemas
and decision making processes so that they can be both responsive
and efficient.

Index Terms—Decision support; situation awareness; expert
systems; control; adaptive systems; flexible data

I. INTRODUCTION

Software systems that must adapt to changing conditions
normally must be reconfigured and even redeveloped by hu-
mans. Such adaptations can be costly and time-consuming.
As a result, software systems are generally unresponsive to
sudden changes in circumstances. To deal with this problem,
systems have been developed that are self-adaptive, and this
is an important research area. In this article, we propose
an architecture for self-adaptation of software for decision
making processes. Our architecture addresses not only the
process of monitoring and adaptation but also the structure
of the data that will be needed for restructuring and adapting
the decision making process. The objective is to support both
responsiveness and efficiency when conditions change.

An example of the need for adaptive decision making pro-
cesses is the problem of controlling an aircraft. This involves
many decisions that must be made, and there is a great deal of
experience that is available to pilots and autopilots. However,
circumstances can change very suddenly and dramatically. For
example, a bird strike can cause complete loss of power, as in
the case of US Airlines Flight 1549 [1], [2]. In this incident,
the pilot, Sullenberger, had to develop a novel river landing
procedure in a matter of only a few seconds. To develop the
new procedure, Sullenberger had to combine a number of pro-
cedures based on his knowledge and experience. Sullenberger

also had to verify that the combined procedure would satisfy
a number of safety constraints, such as avoiding buildings and
bridges. Modern autopilots are not sufficiently adaptable to be
able to discover and verify such new procedures. This example
is similar to many other emergency situations, such as nuclear
power plant emergencies, and automobile driving emergencies.
We will use this example to help explain our proposed self-
adaptive decision making process.

Many kinds of self-adaptive system have been proposed. In
Section II we survey related work in this area. Our proposed
architecture offers additional features not currently available
with existing approaches.

The framework we will use for decision making processes is
Boyd’s OODA loop [3]. The OODA loop has been expressed
in terms of situation awareness in the Knowledge Intensive
Data System (KIDS) framework developed in [4], and a formal
ontological treatment has been developed in [5]. KIDS is based
on the situation theory developed by Barwise and Perry [6]-
[8], subsequently extended by Devlin [9], then formalized by
the Situation Theory Ontology in [10]. We give an overview
of these treatments in Section III. However, our discussion
should apply to other dynamic decision making frameworks
that are generally compatible with the OODA loop.

The specific aspects of dynamic decision making processes
that are of concern for adaptation are the data and the functions
that process the data. The evolution of the structure and the
kinds of data being processed are especially difficult to adapt,
and very few systems allow for evolution of this kind. Flexible
and evolving data is the subject of Section IV.

The adaptation of the software components of a system
has been the primary focus of self-adaptive systems research.
We present our approach to software components for decision
making in Section V. Our approach builds on previous work
on self-controlling software.

The proposed architecture for adaptive, evolving decision
making processes is presented in Section VI. The adaptation
part of this architecture is dependent on decision making,
which can be complex and involve many interdependent deci-
sions that must be made. We end this article with a conclusion
and outline of our plans for future work in Section VII.

II. RELATED WORK

One of the earliest examples of an architecture for self-
adaptation of software is the Self-Controlling Software Model
(SCSM) developed in [11]. The SCSM controls the software
system using control theory techniques and has three levels of
control: feedback, adaptation and reconfiguration. The feed-
back level controls the software using a controller module. The
adaptation level changes the controller in response to changing
conditions. The reconfiguration level deals with dynamics that
changes structurally in an unpredictable fashion. This level
can change to a different design entirely that is selected from
a library of alternatives that have already been trained. The
reconfiguration level goes well beyond simply modifying vari-
ous parameters as the adaptation level does; the reconfiguration
level can redesign the structure of the software. The redesigned
software is composed from modules that are checked for
compatibility and correctness by using algebraic specifications.
The SCSM addresses a number of issues that can occur when
a system is self-reconfigurable such as generality, chattering,
proactive reconfiguration, and efficiency. Although the SCSM
specifies what the reconfiguration level should achieve, it does
not have a process model for how the decisions are being
made at the reconfiguration level, and it does not consider data
adaptation. Our proposed architecture provides such a process
model and addresses the adaptation of data.

For a survey and taxonomy of self-adaptive systems see
[12]. Self-adaptive systems address the problem of the high
cost of manually adapting software to changing conditions.
Normally, manual adaptation of software involves reconfigura-
tion and even redevelopment by humans. Such adaptations are
not only costly but are also time-consuming. These problems
are primarily due to the open-loop process of software devel-
opment generally followed today. Accordingly, the response
to these problems is to develop self-adaptive software that is
a closed-loop system with a feedback loop aiming to adjust
itself to changes during its operation [12]. Unfortunately,
this can limit the possibilities for adaptation when open-loop
interaction with the world is a fundamental aspect of the
system. This is the case for the processes considered in this
article that make decisions based on sensor data. Nevertheless,
features of existing self-adaptive systems can be incorporated
into the model proposed in this article when appropriate.

Self-adaptive systems can use machine learning as a mech-
anism for adaptation. Reinforcement learning (RL) is one
class of machine learning algorithms for decision making that
includes a mechanism for continuous adaptation [13]. Such
algorithms attempt both to optimize performance (referred to
as “exploitation”) and to find new opportunities (referred to
as “exploration”). The exploration feature of RL algorithms is
a form of reconfiguration. The balance between exploitation
and exploration is typically determined by a parameter that
specifies the probability that an action is chosen at random
rather than according to the currently learned behavior. While
one can determine what the parameter should be when the

system can be completely modeled analytically, for more
complex systems that can have sudden changes in circum-
stances, one can only use various heuristics for selecting the
parameter. The self-adaptive decision making model proposed
in this article could be used not only to select the parameter
but also to perform more dramatic reconfigurations such as
substituting a previously learned RL model. Like the other
self-adaptive models described in this section, RL algorithms
do not consider data restructuring.

III. THE KIDS FRAMEWORK

The KIDS framework is a decision making and enactment
process for situations that distinguishes different kinds of
reasoning as well as different kinds of data in the decision
making process [4], [14]-[16]. The kinds of reasoning in
the KIDS framework correspond to the steps in the OODA
Loop [3]. In the OODA loop, decision makers perform a series
of steps repeatedly. The decision makers Observe the facts by
capturing, fusing and filtering relevant data about the entities
and environment. Then they use the information condensed
from the facts to Orient within the unfolding situation. This
step applies knowledge and personalization from sources such
as prior experience, cultural traditions and genetic heritage.
The results of this step are hypotheses that best explain the
observations. Next the decision makers use the hypotheses
to Decide on the directives. Then they Act on the directives
to interact with the entities and environment and to test
the hypothesis. The KIDS framework formalizes these four
reasoning processes as instances of Classification, Assessment,
Resolution and Enactment, respectively. Because of the large
amounts of data that are now available, it is often necessary
to perform relevance reasoning to select the data that form the
situations in each reasoning process.

For airplane emergency example, the pilots had observed
both the bird strike itself and the subsequent instrument
readings. They needed to condense this information into an
hypothesis about what the situation is. This is the orient step.
The hypothesis was that the plan had suffered a loss of power
in both engines. The next step was to decide what to do. The
proper procedure was to verify their conclusion. Their actions
included a number of instrument checks as well as attempting
to restart the engines. At that point, they had established their
situation awareness and notified controllers that they had an
emergency.

Data is subclassed into four classes: Fact, Perception, Hy-
pothesis and Directive. Each of these is the input of one
reasoning function and the output of another. The reasoning
functions are discussed in Section V below. The data produced
by the last step in the process consists of action plans that
affect the world, which is then observed to produce more facts,
and the process then proceeds iteratively. This loop is shown
in Figure 1. The reasoning actions in this loop are discussed
in detail in Section V.

For airplane emergency example, the facts are the data about
the airplane within its environment, such as its speed, altitude,
heading, thrust, cabin pressure and temperature, to name a few.
Most of this data is not relevant, of course. The perceptions are
the instrument readings and direct observations by the pilots.
Again, most of the instrument readings are not relevant. The
hypothesis is that the airplane has lost all thrust. The directive
is to verify the hypothesis using standard procedures.

Classification _
Facts » Perceptions
A >

;

Enactment
JUawssas

s

Y
tives [= Hypotheses
Resolution yp

Fig. 1. Diagram of the dynamic decision cycle of the KIDS Framework

3

Direc

IV. FLEXIBLE DATA

Traditional information storage systems, such as relational
databases [17] and ontology-based systems, presume that the
schema or ontology is developed prior to processing and
storing the data. This assumption is not satisfied by many
forms of data that are commonly needed in processes for
situation awareness and decision making, such as human
intelligence. Such data can be in a variety of forms ranging
from unstructured documents, images and video to semi-
structured documents, such as spreadsheets, spatial data and
linked data [18]. This kind of data is unlikely to have a
fixed schema or ontology. The best one can hope for is some
minimal structure in the form of a schema or ontology that
is continually changing. This kind of data is called Flexible
Schema Data (FSD) [5].

There are many systems that already deal with FSD. Un-
structured data such as text documents will often have a text
index, while images and video will have associated metadata.
Semi-structured data is represented in XML or JSON, and
systems such as some relational databases and most NoSQL
systems can process such data. However, there is little com-
monality among all of the formats and query languages for this
great variety of unstructured and semi-structured data. Data
platforms have incompatible capabilities and query languages.
Most importantly, integration of such data is currently handled
in an ad hoc manner by application programmers.

To deal with this problem, Liu and Gawlick [19] have
proposed three principles to extend relational database plat-
forms to manage FSD in the new extended relational systems;

namely, principles for data storage, querying and indexing.
These principles have been implemented in the Adaptive
Schema Database (ASD) approach proposed in [20]. The ASD
approach uses probabilistic curation to discover schemas and
user feedback to improve the quality of the schemas. The ASD
is responsible for decoupling the processes that are making use
of the FSD data from the schemas used for data storage. This
decoupling is important for allowing processes to make use
of new kinds of data without the need for redeveloping the
software that is responsible for the processes.

As we discussed in Section III, the KIDS ontology parti-
tions data into four subclasses. Because modern sensors are
inexpensive and produce data at very high rates, the volume of
data in the Fact and Perception classes can be very large. Since
much of this data is only semi-structured, and its structure
evolves over time, it is necessary to use a flexible approach to
the processing of the Fact data. The other subclasses of data
in the KIDS ontology generally contain smaller amounts of
data because they are outputs of reasoning processes, but in
emergency situations, such as the airplane emergency example,
the structure of all forms of data can evolve rapidly. In the
airplane emergency, the pilot had to reason about data that is
not normally part of a airline flight, such as the kinds and
capacities of boats at the landing area.

V. EVOLUTION OF FUNCTIONALITY

The KIDS ontology also classifies reasoning processes and
the activities performed by these processes. The four main
classes representing reasoning processes are Classification,
Assessment, Resolution, and Enactment. These reasoning pro-
cesses are performed in a loop called the CARE loop. The
CARE loop is the OODA loop in the KIDS framework. Each
instance of one of these classes is a reasoning function that
uses a situation as input and produces another situation as
output. The overall dynamic decision making process is a loop
as shown in Figure 1. Sensor data and other input data to
the process are managed by the Classification functions. The
overall output of the process is performed by the Enactment
functions. An invocation of a reasoning function is an activity.
Each activity includes the function being invoked, any parame-
ters needed by the function, provenance information, as well as
references to the input situation and the output situation. The
classes of activities that correspond to the reasoning processes
are Classify, Assess, Resolve, and Enact. The last of these
activities, Enact, includes the goal that the CARE loop is
intended to achieve. Other responsibilities of Enact activities
include verification of the quality of the facts and determining
whether there are any actionable perceptions that need to be
created or updated [21].

In the airplane emergency example, verification of the
situation was an important part of the initial stages of response
to the emergency. The loss of an aircraft is not something
that a pilot would consider without very strong evidence
that there was no feasible alternative. Because of the dire

consequences of incorrect situation awareness, the verification
process will normally involve more than one cycle through the
OODA/CARE loop.

The situations used as input and produced as output by
these activities are also classified. The requirements for the
input situations and the characteristics of the outputs are also
specifiable in the KIDS ontology. For more details, see [5].

The evolution of the CARE loop can be accomplished in
two different ways. The first is to customize the reasoning
functions without changing the functions being used. This
is typically done by adjusting parameters. When a reasoning
function is invoked, the parameters are included as part of
the recording of the activity object. This is important for
monitoring the CARE loop. The second approach is to select
different reasoning functions. This strategy is used when
the current reasoning functions are no longer adequate. This
can happen for a variety of reasons, such as a changing
environment, a changing goal, and new kinds of data.

In most airplane emergencies, the result of the emergency
is to change the destination. This is more than just a case of
adjusting some parameters, since a new flight plan is being
developed and deployed. However, such an emergency does
not normally require changing the reasoning processes that
are used for executing the new flight plan. That was not the
case for the Sullenberger airplane emergency example where
a novel landing procedure had to be developed, deployed and
executed.

VI. PROPOSED ARCHITECTURE

Self-adaptation of a decision making process is driven by
another decision making process, so it is natural for our
proposed architecture to take advantage of the KIDS frame-
work. To distinguish this new decision making process from
the one that is being controlled and adapted, we call it the
Adaptor Decision Making Process, or just the Adaptor. The
facts that are used as input to the Adaptor can be classified into
type classes: DataStructure and ActivityStructure. Instances of
DataStructure are the kinds and sources of data that are being
generated by the sensors. Such data are assumed to have been
expressed using FSD, and are being managed by the ASD.
When a new kind or source of data is available to the CARE
loop, the ASD reports this to the Adaptor as an instance of
DataStructure.

In the airplane emergency example, once the emergency was
declared, the subsequent iterations of the Adaptor CARE loop
had as their goal finding a feasible landing area. The sources of
data for these iterations are aeronautical charts, especially the
locations of airports. The situation of the airplane dictated that
only the nearest airports or other landing areas were relevant.
In the first iteration, only airports were considered. There were
several nearby airports. This is not a new kind of data so now
adaptation was required. However, when it was determined
that no airport was a feasible destination, in later iterations,

other sources of data about landing areas had to be used, and
these did require a new kind of data. The eventual landing
area on the Hudson River did not have any runways.

The instances of ActivityStructure are the parameters of the
activities performed by the CARE loop. As noted in Section V
above, an activity includes a variety of provenance information
that, in principle, would allow the activity to be repeated.
Only some of the activity information is used by the instances
of ActivityStructure. As with any decision making process,
relevance reasoning is performed to select those properties that
are to be used for monitoring the performance of the CARE
loop and that can be modified to improve performance. This
relevance reasoning is performed statically.

In the airplane emergency example, the accident was thor-
oughly investigated by federal agencies who carefully con-
sidered all of the data on the airplane’s data recorders, data
from other sensors such as radars, and examinations of the
wreckage. Provenance is important during such an investiga-
tion. Examples include the time when an event occurred, who
is speaking during cockpit communications, what actions each
pilot performed, etc.

The output of a CARE loop consists of directives that are the
plans for enacting the decisions made by the CARE loop. For
the Adaptor CARE loop, these directives are subclassified into
two classes: DataDirective and ActivityDirective. Instances
of DataDirective control the ASD by informing the ASD
about which of the kinds and sources of data are relevant
to the CARE loop. The Adaptor uses reasoning techniques to
determine relevance, such as sensitivity analyses. Unlike the
static relevance reasoning performed for ActivityStructure, this
relevance reasoning is performed dynamically.

In the airplane emergency example, both new sources of
data and new reasoning techniques had to be deployed. Once
it was determined that no airport landing was possible, the
pilots had to consider other possibilities. The requirements for
landing a modern airliner are very stringent. The reasoning
technique consists of applying the requirements to the geo-
graphic area within the range of the airplane. Even if a suitable
landing area was close enough, the glide path had to avoid
any obstructions. The pilots determined that there were two
possible landing areas, both of which were water landing areas.
In terms of the Adaptor CARE loop, these were hypotheses,
each one being a landing situation. The Hudson River was one
of the hypotheses.

The instances of ActivityDirective are modifications to be
performed on the CARE loop. Such an instance can either be
a change to the activity parameters or can be a restructuring
operation in which different reasoning functions are used.
One example of an activity directive is the tuning of the
filtering associated with each reasoning process. Filtering
selects the data that is specifically relevant to the situation
that is input to a CARE step (such as selecting data that is
nearby geographically). Note that this activity is not concerned

with the structure of the data, as that is the responsibility of
the ASD. The architecture of the Adaptor is summarized in
Figure 2.

In the airplane emergency example, the two possible water
landings required substantial modifications to the landing
procedures. Water landings are very risky and seldom suc-
cessful. For obvious reasons, few pilots have actual experience
with them, and even fewer have multiple experiences. Flight
simulators could, in principle, provide such experience, but
they do not currently have such a capability [22].

Another new activity required by the airplane emergency
example is whether there would be sufficient boats to carry
the passengers to shore after they evacuated the airplane. If
there had been only one possible landing area, this would have
been moot, but since there was a choice, the pilots had to
use other information. This iteration of the Adaptor CARE
loop used information that would not normally be part of
any airline flight, and would not normally be available to
the pilots. However, in this case, Sullenberger had personal
knowledge about the boats that were available in each of the
two landing situations. There were many more ferry boats
on the Hudson and they had much greater capacity than the
alternative. Accordingly, he made the decision to land on the
Hudson.

Adaptor
Adaptr Fact CARE Loop

|
Adaptor Directive

I Data Structure ‘ | Activity Structure \

| Data Directive | | Activity Directive ‘

Data Storage

Fig. 2. Architecture Diagram for Self-Adaptive Dynamic Decision Making
Processes

The Adaptor CARE loop runs at the same or somewhat
lower frequency than the CARE loop being adapted. This
allows the Adaptor to tune activities in the CARE loop
in the same manner as a feedback control loop. However,
restructuring is expected to be a relatively infrequent operation.
The Adaptor architecture is compatible with the architecture
of the SCSM in [11], which includes three levels of control,
the highest of which is the reconfiguration loop.

There are four stages in the Adaptor CARE loop with the
following responsibilities:

Y

2)

3)

The Adaptor Classification stage performs data reduction
on the Adaptor Facts. This generally would use statisti-
cal techniques for the ActivityStructure data. The DataS-
tructure instances consist of schema metadata and may
not require any data reduction, or possibly a decision
tree can be used.

In the airplane emergency example, both logical and
probabilistic reasoning was used. To determine a feasible
landing area, a number of logical constraints had to be
satisfied as well as the likelihood that the landing area
could be reached.

The Adaptor Assessment stage uses the output of the
Adaptor Classification stage to determine whether to
tune the parameters of the CARE loop or to restructure
it. This can be done using a number of techniques.
For the classified ActivityStructure information, such
as the Multivariate State Estimation Technique using
techniques such as Sequential Probability Ratio Tests or
Bayesian Belief Networks [21]. For the DataStructure
information, either a decision tree or Bayesian Belief
Network can be used but there are many other tech-
niques. The outputs of this stage can be expressed as
hypotheses. This is the point where human intervention
can most easily be included in the loop.

In the airline emergency example, there were a series
of hypotheses for the various iterations. The earliest
iterations had as their hypothesis that the an emergency
had occurred. These iterations relied primarily on logical
deductions, but they would have benefited from other
techniques that can deal with problems such as faulty or
failed sensors. The later iterations were less logical and
more probabilistic, as the pilots had to consider potential
landing areas that are highly risky.

The Adaptor Resolution stage determines the directives
for adapting the CARE loop being monitored. This
can be done using decision trees or Bayesian Influence
Networks. Directives that tune the CARE loop param-
eters can be computed using control theory techniques
as discussed in [11]. Restructuring directives are more
complex. When the Fact data structure of the CARE
loop is changing, the restructuring decisions proceed
forward through the CARE loop stages, by successively
selecting compatible reasoning functions that can pro-
cess the new input data structures. When the goal of
the CARE loop has changed, the restructuring decisions
proceed backward through the CARE loop stages, by
successively selecting compatible reasoning functions
that can produce the data structures needed by the
new goal. Techniques such as Bayesian Belief Networks
proceed in both directions through the stages.

In the airline emergency example, the restructuring was
extensive. The pilots had to “cobble” together a very
non-standard landing procedure. Nevertheless, most of
the components of the procedure were standard, includ-
ing steps such as banking, trimming, and managing the
control surfaces. The components of the new procedure

have to be selected, checked for compatibility with
one another and then combined to form the overall
procedure.

As noted in [5], the Assessment and Resolution stages
can be combined if there is no reason for explicitly
generating hypotheses. This could be done, for example,
if the Adaptor is not being monitored by a human or
other process.

4) The Adaptor Enactment stage modifies the CARE loop

and ASD as shown in Figure 2. Modifying reasoning
function parameters is relatively easy to enact. Restruc-
turing is more complex. If the new configuration is
a already known, then one can restructure by simply
installing the new functionality. However, if the config-
uration is new, then a training period will be necessary.
This will use machine learning techniques and may
require human supervision.
In the airplane emergency example, once the pilots
had constructed the new procedure, they carried it out.
Needless to say, no training period was possible. It was
not quite as successful as Sullenberger had hoped, since
the automated systems of the airplane did not allow him
to perform the maneuvers in exactly the way he wanted.
While the pilots had a good understanding of the new
procedure and were executing it, the airplane’s systems
were not restructured. Indeed, alarms were sounding
continually until the plane stopped moving.

Since the Adaptor is structured as a CARE loop, it will
include the same features as any CARE loop. An important
aspect of a CARE loop is the recording of provenance infor-
mation. This part of the KIDS ontology uses the Provenance
Interchange Ontology [5], [23]. Provenance information in-
cludes not only the “change tracking” information, but also
the rationales for the modifications made by the Adaptor.

VII. CONCLUSION AND FUTURE WORK

We have proposed an architecture for a self-adaptive dy-
namic decision making process. This architecture makes use
of known techniques for flexible data, self-adaptation and
decision making, but organizes them in a novel manner.
While the intention was to focus on the specific scenario
of self-adaptation of a decision making process, the same
techniques could be employed for self-adaptation of more
general processes. In particular, the KIDS framework and
ontology has proven to be a versatile approach for formalizing
applications in a large variety of domains.

ACKNOWLEDGMENTS

We wish to acknowledge the continuing support of Oracle
to the development of the KIDS framework and ontology.

[1]

[2]
[3]

[4]

[5]

[6]
[7]
[8]
[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

“US Airways Flight 1549,” 2009 [Online], Available:
wikipedia.org/wiki/US_Airways_Flight_1549.

C. Sullenberger and J. Zaslow, Sully. William Morrow, 2009.

J. Boyd, “Destruction and creation,” U.S. Army Command and
General Staff College, Tech. Rep., September 3 1976 [Online],
Available: http://www.goalsys.com/books/documents/DESTRUCTION_
AND_CREATION.pdf.

D. Gawlick, E. Chan, A. Ghoneimy, and Z. Liu, “Mastering situation
awareness: The next big challenge?” SIGMOD Record, vol. 44, no. 3,
pp. 19-24, 2015.

K. Baclawski, E. Chan, D. Gawlick, A. Ghoneimy, K. Gross, Z. Liu, and
X. Zhang, “Framework for ontology-driven decision making,” Applied
Ontology, 2017, to appear.

J. Barwise, “Scenes and other situations,” J. Philosophy, vol. 77, pp.
369-397, 1981.

J. Barwise and J. Perry, Situations and Attitudes. Cambridge, MA: MIT
Press, 1983.

J. Barwise, The Situation In Logic.
International, 1989, vol. 17.

K. Devlin, Logic and Information.
University Press, 1991.

C. Matheus, M. Kokar, and K. Baclawski, “A core ontology for situ-
ation awareness,” in Proc. Sixth Intern. Conf. on Information Fusion
FUSION’03, July 2003, pp. 545-552.

M. Kokar, K. Baclawski, and Y. Eracar, “Control theory-based founda-
tions of self-controlling software,” IEEE Intelligent Systems and their
Applications, vol. 14, no. 3, pp. 37-45, 1999.

M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, May 2009, doi:10.1145/1516533.1516538.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, Massachusetts: The MIT Press, 1998.

Z. Liu, A. Behrend, E. Chan, D. Gawlick, and A. Ghoneimy, “KIDS
- A model for developing evolutionary database applications,” in Pro-
ceedings of the International Conference on Data Technologies and
Applications (DATA 2012), Rome, Italy, 25-27 July 2012, pp. 129-134.
E. Chan, A. Behrend, D. Gawlick, A. Ghoneimy, and Z. Liu, “Towards
a synergistic model for managing data, knowledge, processes, and social
interaction,” in Society for Design and Process Science (SDPS), 2012.
E. Chan, D. Gawlick, A. Ghoneimy, and Z. Liu, “Situation aware
computing for big data,” in Workshop on Semantics for Big Data
on the Internet of Things (SemBloT 2014), 2014 IEEE International
Conference on Big Data, Washington DC, October 27-30 2014.

E. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377-387, 1970.

C. Bizer, T. Heath, and T. Berners-Lee, “Linked data—the story so far,”
International Journal on Semantic Web and Information Systems, vol. 5,
no. 3, pp. 1-22, 2009, doi:10.4018/jswis.2009081901. ISSN 1552-6283.
Z. Liu and D. Gawlick, “Management of flexible schema data in
RDBMSs via naturally open set-oriented query language (NoSQL),”
2016. Oracle.

W. Spoth, B. Arab, E. Chan, D. Gawlich, A. Ghoneimy, B. Glavic,
B. Hammerschmidt, O. Kennedy, S. Lee, Z. Liu, X. Niu, and Y. Yan,
“Adaptive schema databases,” in 8th Biennial Conference on Innova-
tive Data Systems Research (CIDR ’17), Chaminade, California USA,
January 8-11, 2017.

K. Gross, K. Baclawski, E. Chan, D. Gawlick, A. Ghoneimy, and Z. Liu,
“KIDS supervisory control loop with MSET prognostics for human-in-
the-loop decision support and control applications,” in CogSIMA 2017,
2017, submitted.

“Aviation StackExchange,” 2014 [Online], Available: http://aviation.
stackexchange.com/questions/7835/can-water-landing-be-simulated.
“PROV Ontology (PROV-0),” April 30 2013 [Online], Available: http:
/Iwww.w3.0rg/TR/2013/REC-prov-0-20130430/.

https://en.

Menlo Park, CA: CSLI/SRI

Cambridge, U.K.: Cambridge

